TWO WEIGHT NORM INEQUALITIES FOR THE g FUNCTION

被引:18
作者
Lacey, Michael T. [1 ]
Li, Kangwei [2 ,3 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
two weight inequalities; square functions; OPERATORS;
D O I
10.4310/MRL.2014.v21.n3.a9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given two weights sigma, w on R-n, the classical g-function satisfies the norm inequality parallel to g(f sigma)parallel to(2)(L)(w) less than or similar to parallel to f parallel to (2)(L)(sigma) if and only if the two weight Muckenhoupt A(2) condition holds, and a family of testing conditions holds, namely integral integral(Q(I)) (del P-t(sigma 1(I))(x, t))(2) dw tdt less than or similar to sigma(I) uniformly over all cubes I subset of R-n, and Q(I) is the Carleson box over I. A corresponding characterization for the intrinsic square function of Wilson also holds.
引用
收藏
页码:521 / 536
页数:16
相关论文
共 16 条
[1]   The sharp weighted bound for general Calderon-Zygmund operators [J].
Hytonen, Tuomas P. .
ANNALS OF MATHEMATICS, 2012, 175 (03) :1473-1506
[2]  
Lacey M., DUKE MATH J IN PRESS
[3]  
Lacey M.T., LOCAL TB THEOREM 12
[4]  
Lacey M.T., 2013, DUKE MATH J IN PRESS
[5]   A two weight inequality for the Hilbert transform assuming an Energy Hypothesis [J].
Lacey, Michael T. ;
Sawyer, Eric T. ;
Uriarte-Tuero, Ignacio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (02) :305-363
[6]  
Lacey MichaelT., 2013, Two weight inequality for the Hilbert transform: A primer
[7]   Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals [J].
Lerner, Andrei K. .
ADVANCES IN MATHEMATICS, 2011, 226 (05) :3912-3926
[8]  
Martikainen H., P AMS IN PRESS
[9]   The Tb-theorem on non-homogeneous spaces [J].
Nazarov, F ;
Treil, S ;
Volberg, A .
ACTA MATHEMATICA, 2003, 190 (02) :151-239
[10]  
Nazarov F., 2004, 2 WEIGHT ESTIMATE HI