Examples in finite Gel'fand-Kirillov dimension

被引:16
作者
Bell, JP [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
D O I
10.1016/S0021-8693(03)00021-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By modifying constructions of Beidar and Small we prove that for countably generated prime F-algebras of finite GK dimension there exists an affinization having finite GK dimension. Using this result we show: for any field there exists a prime affine algebra of GK dimension two that is neither primitive nor PI; for any countable field F there exists a prime affine F-algebra of GK dimension three that has non-nil Jacobson radical; for any countable field F there exists an affine primitive F-algebra of GK dimension at most four with center equal to a polynomial ring; for a countable field F there exists a primitive affine Jacobson F-algebra of GK dimension three that does not satisfy the Nullstellensatz. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:159 / 175
页数:17
相关论文
共 8 条
[1]  
Amitsur S. A., 1956, P AM MATH SOC, V7, P35
[2]   PRIME VON-NEUMANN REGULAR RINGS AND PRIMITIVE GROUP ALGEBRAS [J].
FISHER, JW ;
SNIDER, RL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (02) :244-250
[4]  
KRAUSE GR, 2000, GRAD STUD MATH, V22
[5]   PRIMITIVITY OF PRIME RINGS [J].
LANSKI, C ;
RESCO, R ;
SMALL, L .
JOURNAL OF ALGEBRA, 1979, 59 (02) :395-398
[6]  
MCCONNELL JC, 1987, NONCOMUTATIVE NOETHE
[7]   PRIME AFFINE ALGEBRAS OF GELFAND-KIRILLOV DIMENSION ONE [J].
SMALL, LW ;
WARFIELD, RB .
JOURNAL OF ALGEBRA, 1984, 91 (02) :386-389
[8]  
[No title captured]