A Meta-Learning Approach to Select Meta-Heuristics for the Traveling Salesman Problem Using MLP-Based Label Ranking

被引:0
作者
Kanda, Jorge [1 ,2 ]
Soares, Carlos [3 ,4 ]
Hruschka, Eduardo [1 ]
de Carvalho, Andre [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Computacao, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Fed Amazonas, Inst Ciencias Exatas Tecnol, BR-69103128 Itacoatiara, Brazil
[3] Univ Porto, Fac Econ, P-4200464 Oporto, Portugal
[4] INESC, TEC Porto LA, P-4200464 Oporto, Portugal
来源
NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III | 2012年 / 7665卷
关键词
meta-learning; label ranking; multilayer perceptron; traveling salesman problem; OPTIMIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Different meta-heuristics (MHs) may find the best solutions for different traveling salesman problem (TSP) instances. The a priori selection of the best MH for a given instance is a difficult task. We address this task by using a meta-learning based approach, which ranks different MHs according to their expected performance. Our approach uses Multilayer Perceptrons (MLPs) for label ranking. It is tested on two different TSP scenarios, namely: re-visiting customers and visiting prospects. The experimental results show that: 1) MLPs can accurately predict MH rankings for TSP, 2) better TSP solutions can be obtained from a label ranking compared to multilabel classification approach, and 3) it is important to consider different TSP application scenarios when using meta-learning for MH selection.
引用
收藏
页码:488 / 495
页数:8
相关论文
共 25 条
  • [11] GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES
    FEO, TA
    RESENDE, MGC
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 1995, 6 (02) : 109 - 133
  • [12] Multilabel classification via calibrated label ranking
    Fuernkranz, Johannes
    Huellermeier, Eyke
    Mencia, Eneldo Loza
    Brinker, Klaus
    [J]. MACHINE LEARNING, 2008, 73 (02) : 133 - 153
  • [13] Hall M., 2009, SIGKDD Explorations, V11, P10, DOI DOI 10.1145/1656274.1656278
  • [14] Holland J. H., 1973, SIAM Journal on Computing, V2, P88, DOI 10.1137/0202009
  • [15] OPTIMIZATION BY SIMULATED ANNEALING
    KIRKPATRICK, S
    GELATT, CD
    VECCHI, MP
    [J]. SCIENCE, 1983, 220 (4598) : 671 - 680
  • [16] Papadimitriou C. H., 1977, Theoretical Computer Science, V4, P237, DOI 10.1016/0304-3975(77)90012-3
  • [17] Reinelt G., 1991, ORSA Journal on Computing, V3, P376, DOI 10.1287/ijoc.3.4.376
  • [18] Rumelhart D.E., 1987, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, P318
  • [19] Measuring instance difficulty for combinatorial optimization problems
    Smith-Miles, Kate
    Lopes, Leo
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2012, 39 (05) : 875 - 889
  • [20] Understanding TSP Difficulty by Learning from Evolved Instances
    Smith-Miles, Kate
    van Hemert, Jano
    Lim, Xin Yu
    [J]. LEARNING AND INTELLIGENT OPTIMIZATION, 2010, 6073 : 266 - +