A Meta-Learning Approach to Select Meta-Heuristics for the Traveling Salesman Problem Using MLP-Based Label Ranking

被引:0
作者
Kanda, Jorge [1 ,2 ]
Soares, Carlos [3 ,4 ]
Hruschka, Eduardo [1 ]
de Carvalho, Andre [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Computacao, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Fed Amazonas, Inst Ciencias Exatas Tecnol, BR-69103128 Itacoatiara, Brazil
[3] Univ Porto, Fac Econ, P-4200464 Oporto, Portugal
[4] INESC, TEC Porto LA, P-4200464 Oporto, Portugal
来源
NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III | 2012年 / 7665卷
关键词
meta-learning; label ranking; multilayer perceptron; traveling salesman problem; OPTIMIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Different meta-heuristics (MHs) may find the best solutions for different traveling salesman problem (TSP) instances. The a priori selection of the best MH for a given instance is a difficult task. We address this task by using a meta-learning based approach, which ranks different MHs according to their expected performance. Our approach uses Multilayer Perceptrons (MLPs) for label ranking. It is tested on two different TSP scenarios, namely: re-visiting customers and visiting prospects. The experimental results show that: 1) MLPs can accurately predict MH rankings for TSP, 2) better TSP solutions can be obtained from a label ranking compared to multilabel classification approach, and 3) it is important to consider different TSP application scenarios when using meta-learning for MH selection.
引用
收藏
页码:488 / 495
页数:8
相关论文
共 25 条
  • [1] [Anonymous], ANN OPER RES, DOI DOI 10.1007/BF02078647
  • [2] [Anonymous], 2010, HDB METAHEURISTICS
  • [3] [Anonymous], 2006, Introduction to Data Mining
  • [4] [Anonymous], 2011, INT J HYBRID INTELL
  • [5] [Anonymous], 2011, Neural Networks and Learning Machines
  • [6] [Anonymous], 2009, Cognitive Technologies
  • [7] Applegate David L, 2006, TRAVELING SALESMAN P
  • [8] Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results
    Brazdil, PB
    Soares, C
    Da Costa, JP
    [J]. MACHINE LEARNING, 2003, 50 (03) : 251 - 277
  • [9] Dekel O., 2003, ADV NEURAL INFORM PR
  • [10] Dorigo M., 1997, IEEE Transactions on Evolutionary Computation, V1, P53, DOI 10.1109/4235.585892