High-Resolution and Accurate Spatial-Temporal Prediction of Oceanographic Fields via Sparse Observations from Marine Vehicle Network using Deep Learning and Data Assimilation
被引:0
|
作者:
Jin, Qianlong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
Chinese Acad Sci, Inst Robot, Shenyang 110169, Peoples R China
Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 110169, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
Jin, Qianlong
[1
,2
,3
,4
]
Tian, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
Chinese Acad Sci, Inst Robot, Shenyang 110169, Peoples R China
Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 110169, Peoples R ChinaChinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
Tian, Yu
[1
,2
,3
]
Sang, Qiming
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
Chinese Acad Sci, Inst Robot, Shenyang 110169, Peoples R China
Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 110169, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
Sang, Qiming
[1
,2
,3
,4
]
Zhan, Weicong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
Chinese Acad Sci, Inst Robot, Shenyang 110169, Peoples R China
Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 110169, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
Zhan, Weicong
[1
,2
,3
,4
]
Yu, Jiancheng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
Chinese Acad Sci, Inst Robot, Shenyang 110169, Peoples R China
Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 110169, Peoples R ChinaChinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
Yu, Jiancheng
[1
,2
,3
]
Wang, Xiaohui
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
Chinese Acad Sci, Inst Robot, Shenyang 110169, Peoples R China
Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 110169, Peoples R ChinaChinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
Wang, Xiaohui
[1
,2
,3
]
机构:
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Robot, Shenyang 110169, Peoples R China
[3] Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 110169, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源:
OCEANS 2022
|
2022年
基金:
中国国家自然科学基金;
关键词:
Marine Vehicles;
Ocean Modeling;
Deep Learning;
Data Assimilation;
D O I:
10.1109/OCEANSChennai45887.2022.9775234
中图分类号:
U6 [水路运输];
P75 [海洋工程];
学科分类号:
0814 ;
081505 ;
0824 ;
082401 ;
摘要:
High-resolution and accurate prediction of the states of ocean temperature, salinity, and flow fields with the observation of a network of marine vehicles are significant for a variety of civilian and military applications. Relative to the high-dimensional ocean states, the observations by the marine vehicles are sparse and noisy. Thus, how to implement high-resolution and accurate prediction of the oceanographic fields spatially and temporally based on the sparse and noisy data streams provided by a marine vehicle network is an important issue. This paper investigates this issue and presents a data-driven prediction framework, which uses a deep neural network model to predict the mean-field of the ocean states and the Gaussian process to predict the residual. Based on the model, the Kriged Kalman filter method is used to update the network parameters and to predict the ocean states with sensing data of marine vehicles. The deep learning model is based on the ConvLSTM and considers the joint prediction of temperature, salinity, and flow fields. To account for the high-dimension of the network parameters, the filtering is implemented with the ensemble Kalman filter. A simulation demonstration is given to show the learning of the deep neural network parameters with the data assimilation method.
机构:
Xinjiang Univ, Coll Ecol & Environm, Urumqi 830017, Peoples R China
Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaXinjiang Univ, Coll Ecol & Environm, Urumqi 830017, Peoples R China
Li, Wei
Xin, Qinchuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China
CAS Res Ctr Ecol & Environm Cent Asia, Urumqi 830011, Peoples R China
Sun Yat Sen Univ, Sch Geog & Planning, Southern Marine Sci & Engn Guangdong Lab Zhuhai, Guangzhou 510275, Peoples R ChinaXinjiang Univ, Coll Ecol & Environm, Urumqi 830017, Peoples R China
Xin, Qinchuan
Sun, Ying
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Geog & Planning, Southern Marine Sci & Engn Guangdong Lab Zhuhai, Guangzhou 510275, Peoples R ChinaXinjiang Univ, Coll Ecol & Environm, Urumqi 830017, Peoples R China
Sun, Ying
Zhou, Yanqing
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Ecol & Environm, Urumqi 830017, Peoples R China
Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaXinjiang Univ, Coll Ecol & Environm, Urumqi 830017, Peoples R China
Zhou, Yanqing
Li, Jiangyue
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China
CAS Res Ctr Ecol & Environm Cent Asia, Urumqi 830011, Peoples R ChinaXinjiang Univ, Coll Ecol & Environm, Urumqi 830017, Peoples R China
Li, Jiangyue
Wang, Yidan
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Peoples R ChinaXinjiang Univ, Coll Ecol & Environm, Urumqi 830017, Peoples R China
Wang, Yidan
Sun, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaXinjiang Univ, Coll Ecol & Environm, Urumqi 830017, Peoples R China
Sun, Yu
Wang, Guangyu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaXinjiang Univ, Coll Ecol & Environm, Urumqi 830017, Peoples R China
Wang, Guangyu
Xu, Ren
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaXinjiang Univ, Coll Ecol & Environm, Urumqi 830017, Peoples R China
Xu, Ren
Gong, Lu
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Ecol & Environm, Urumqi 830017, Peoples R China
Minist Educ, Key Lab Oasis Ecol, Urumqi 830017, Peoples R ChinaXinjiang Univ, Coll Ecol & Environm, Urumqi 830017, Peoples R China
Gong, Lu
Li, Yaoming
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R China
CAS Res Ctr Ecol & Environm Cent Asia, Urumqi 830011, Peoples R ChinaXinjiang Univ, Coll Ecol & Environm, Urumqi 830017, Peoples R China