Breast cancer dormancy: need for clinically relevant models to address current gaps in knowledge

被引:42
作者
Bushnell, Grace G. [1 ]
Deshmukh, Abhijeet P. [2 ]
den Hollander, Petra [2 ]
Luo, Ming [1 ]
Soundararajan, Rama [2 ]
Jia, Dongya [3 ]
Levine, Herbert [4 ,5 ,6 ]
Mani, Sendurai A. [2 ]
Wicha, Max S. [1 ]
机构
[1] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Translat Mol Pathol, Houston, TX 77030 USA
[3] Rice Univ, Ctr Theoret Biol Phys, Houston, TX USA
[4] Northeastern Univ, Ctr Theoret Biol Phys, Boston, MA 02115 USA
[5] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[6] Northeastern Univ, Dept Bioengn, Boston, MA 02115 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
MOUSE MAMMARY-TUMOR; BONE-MARROW; CELL-LINES; METASTATIC OUTGROWTH; MATHEMATICAL-MODELS; DISTANT METASTASIS; SUPPRESSOR-CELLS; PROGRESSION; INHIBITION; PLASTICITY;
D O I
10.1038/s41523-021-00269-x
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Breast cancer is the most commonly diagnosed cancer in the USA. Although advances in treatment over the past several decades have significantly improved the outlook for this disease, most women who are diagnosed with estrogen receptor positive disease remain at risk of metastatic relapse for the remainder of their life. The cellular source of late relapse in these patients is thought to be disseminated tumor cells that reactivate after a long period of dormancy. The biology of these dormant cells and their natural history over a patient's lifetime is largely unclear. We posit that research on tumor dormancy has been significantly limited by the lack of clinically relevant models. This review will discuss existing dormancy models, gaps in biological understanding, and propose criteria for future models to enhance their clinical relevance.
引用
收藏
页数:12
相关论文
共 153 条
[1]   Engineering the pre-metastatic niche [J].
Aguado, Brian A. ;
Bushnell, Grace G. ;
Rao, Shreyas S. ;
Jeruss, Jacqueline S. ;
Shea, Lonnie D. .
NATURE BIOMEDICAL ENGINEERING, 2017, 1 (06)
[2]   Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice [J].
Albrengues, Jean ;
Shields, Mario A. ;
Ng, David ;
Park, Chun Gwon ;
Ambrico, Alexandra ;
Poindexter, Morgan E. ;
Upadhyay, Priya ;
Uyeminami, Dale L. ;
Pommier, Arnaud ;
Kuttner, Victoria ;
Bruzas, Emilis ;
Maiorino, Laura ;
Bautista, Carmelita ;
Carmona, Ellese M. ;
Gimotty, Phyllis A. ;
Fearon, Douglas T. ;
Chang, Kenneth ;
Lyons, Scott K. ;
Pinkerton, Kent E. ;
Trotman, Lloyd C. ;
Goldberg, Michael S. ;
Yeh, Johannes T. -H. ;
Egeblad, Mikala .
SCIENCE, 2018, 361 (6409) :1353-+
[3]   Mammary tumor growth and pulmonary metastasis are enhanced in a hyperlipidemic mouse model [J].
Alikhani, N. ;
Ferguson, R. D. ;
Novosyadlyy, R. ;
Gallagher, E. J. ;
Scheinman, E. J. ;
Yakar, S. ;
LeRoith, D. .
ONCOGENE, 2013, 32 (08) :961-967
[4]  
Alonso DF, 1996, J SURG ONCOL, V62, P288, DOI 10.1002/(SICI)1096-9098(199608)62:4<288::AID-JSO14>3.0.CO
[5]  
2-1
[6]   A nonlinear mathematical model of cell-mediated immune response for tumor phenotypic heterogeneity [J].
Alvarez, Robinson F. ;
Barbuto, Jose A. M. ;
Venegeroles, Roberto .
JOURNAL OF THEORETICAL BIOLOGY, 2019, 471 :42-50
[7]  
[Anonymous], 2022, SEER cancer statistics review, 1975-2018
[8]   Stress management, leukocyte transcriptional changes and breast cancer recurrence in a randomized trial: An exploratory analysis [J].
Antoni, Michael H. ;
Bouchard, Laura C. ;
Jacobs, Jamie M. ;
Lechner, Suzanne C. ;
Jutagir, Devika R. ;
Gudenkauf, Lisa M. ;
Carver, Charles S. ;
Lutgendorf, Susan ;
Cole, Steven W. ;
Lippman, Marc ;
Blomberg, Bonnie B. .
PSYCHONEUROENDOCRINOLOGY, 2016, 74 :269-277
[9]   A structural methodology for modeling immune-tumor interactions including pro- and anti-tumor factors for clinical applications [J].
Arabameri, Abazar ;
Asemani, Davud ;
Hadjati, Jamshid .
MATHEMATICAL BIOSCIENCES, 2018, 304 :48-61
[10]  
ASLAKSON CJ, 1992, CANCER RES, V52, P1399