The Iwasawa μ-invariant of p-adic Hecke L-functions

被引:34
作者
Hida, Haruzo [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
ANTICYCLOTOMIC L-FUNCTIONS; AUTOMORPHISM-GROUPS; ABELIAN VARIETIES; FIELDS; MODULI; VALUES;
D O I
10.4007/annals.2010.172.41
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an odd prime p, we compute the mu-invariant of the anticyclotomic Katz p-adic L-function of a p-ordinary CM field if the conductor of the branch character is a product of primes split over the maximal real subfield. Except for rare cases where the root number of the p-adic functional equation is congruent to - 1 modulo p, the invariant vanishes.
引用
收藏
页码:41 / 137
页数:97
相关论文
共 57 条
[1]  
[Anonymous], 1970, TATA I FUNDAMENTAL R
[2]  
[Anonymous], GRAD TEXTS MATH
[3]  
[Anonymous], 1980, PRINCETON MATH SERIE
[4]  
ARTIN M, 1969, I HAUTES ETUDES SCI, P23
[5]  
Bosch S., 1990, NERON MODELS ERGEB M, V21
[6]  
Chai C.L., 2003, FAMILIES ORDINARY AB
[7]  
Chai CL, 2008, ASIAN J MATH, V12, P193
[8]   EVERY ORDINARY SYMPLECTIC ISOGENY CLASS IN POSITIVE CHARACTERISTIC IS DENSE IN THE MODULI [J].
CHAI, CL .
INVENTIONES MATHEMATICAE, 1995, 121 (03) :439-479
[9]   Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic [J].
de Jong, AJ .
INVENTIONES MATHEMATICAE, 1998, 134 (02) :301-333
[10]   VALUES OF ABELIAN L-FUNCTIONS AT NEGATIVE INTEGERS OVER TOTALLY-REAL FIELDS [J].
DELIGNE, P ;
RIBET, KA .
INVENTIONES MATHEMATICAE, 1980, 59 (03) :227-286