An additive Schwarz method for variational inequalities

被引:0
作者
Badea, L [1 ]
Wang, JP
机构
[1] Romanian Acad Sci, Inst Math, Bucharest, Romania
[2] Univ Wyoming, Dept Math, Laramie, WY 82071 USA
关键词
variational inequalities; obstacle problems; finite element methods; domain decomposition methods;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes an additive Schwarz method for variational inequalities and their approximations by finite element methods. The Schwarz domain decomposition method is proved to converge with a geometric rate depending on the decomposition of the domain. The result is based on an abstract framework of convergence analysis established for general variational inequalities in Hilbert spaces.
引用
收藏
页码:1341 / 1354
页数:14
相关论文
共 20 条
[1]   ON THE SCHWARZ ALTERNATING METHOD WITH MORE THAN 2 SUBDOMAINS FOR NONLINEAR MONOTONE PROBLEMS [J].
BADEA, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) :179-204
[3]  
BRAMBLE JH, 1991, MATH COMPUT, V57, P1, DOI 10.1090/S0025-5718-1991-1090464-8
[4]   GEOMETRY RELATED CONVERGENCE RESULTS FOR DOMAIN DECOMPOSITION ALGORITHMS [J].
CHAN, TF ;
HOU, TY ;
LIONS, PL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (02) :378-391
[5]  
DRYJA M, 1990, THIRD INTERNATIONAL SYMPOSIUM ON DOMAIN DECOMPOSITION METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, P3
[6]  
DRYJA M, 1989, ADDITIVE SCHWARZ ALG, P168
[7]  
Dryja M., 1988, SOME DOMAIN DECOMPOS, P273
[8]   PARALLEL ALGORITHMS OF SCHWARZ VARIANT FOR VARIATIONAL-INEQUALITIES [J].
HOFFMANN, KH ;
ZOU, J .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1992, 13 (5-6) :449-462
[9]  
KORNHUBER R, 1994, NUMER MATH, V69, P167
[10]  
KUZNETSOV Y, 1994, DOMAIN DECOMPOSITION, P271