Metal-organic framework derived Co@NC/CNT hybrid as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction

被引:71
作者
Yu, Deshuang [1 ]
Ilango, P. Robert [1 ]
Han, Silin [1 ]
Ye, Min [1 ]
Hu, Yuxiang [2 ,3 ]
Li, Linlin [1 ]
Peng, Shengjie [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Jiangsu Key Lab Electrochem Energy Storage Techno, Coll Mat Sci & Technol, Nanjing 210016, Jiangsu, Peoples R China
[2] Univ Queensland, Nanomat Ctr, Sch Chem Engn, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
基金
中国博士后科学基金; “创新英国”项目; 中国国家自然科学基金;
关键词
Cobalt nanoparticles; N-doped carbon; Carbon nanotubes; Electrocatalysts; Zn-air battery; NITROGEN-DOPED CARBON; BIFUNCTIONAL ELECTROCATALYSTS; HIGH-PERFORMANCE; CATALYTIC-ACTIVITY; EFFICIENT; COBALT; BATTERIES; STORAGE; FIBERS;
D O I
10.1016/j.ijhydene.2019.10.149
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Seeking a multifunctional electrocatalyst composed of earth-abundant elements for highly hydrogen and oxygen evolution reaction and oxygen reduction reaction (HER, OER and ORR) is technically imperative for the electrocatalytic applications. Herein, we report HER, OER and ORR electrocatalytic performances of metal-organic framework (MOF) derived cobalt nanoparticles encapsulated in nitrogen-doped carbon and carbon nanotube (CoONC/CNT). The optimized Co@NC/CNT hybrid shows superior HER and OER activities with a small overpotential of 137 mV and 302 mV at a current density of 10 mA cm(-2), respectively. Furthermore, the Co@NC/CNT as an air-cathode in secondary Zn-air battery demonstrates a confined potential gap of 0.88 V over 200 h and a maximum power density of 53.4 mW cm-2, which are much better than those of Pt/C. The outstanding performances are attributed to the synergistic effects from Co, and N embedded into carbon and CNT. More importantly, the unique surface structure contributes to expose many active sites for superior catalytic activity through allowing a large number of electrons. These outcomes not only prove a facile approach for the preparation of metals/carbon hybrid but also disclose its huge possible as a multifunctional electrocatalyst for sustainable energy systems. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:32054 / 32065
页数:12
相关论文
共 50 条
  • [1] Phosphonate-Based Metal-Organic Framework Derived Co-P-C Hybrid as an Efficient Electrocatalyst for Oxygen Evolution Reaction
    Zhou, Tianhua
    Du, Yonghua
    Wang, Danping
    Yin, Shengming
    Tu, Wenguang
    Chen, Zhong
    Borgna, Armando
    Xu, Rong
    ACS CATALYSIS, 2017, 7 (09): : 6000 - 6007
  • [2] Noble-metal-free electrocatalyst based on a mixed CoNi metal-organic framework for oxygen evolution reaction
    Dang, Wen-Jiao
    Shen, Yu-Qian
    Lin, Meng
    Jiao, Huan
    Xu, Ling
    Wang, Zeng-Lin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 792 : 69 - 76
  • [3] Co/C nanomaterial derived from Co metal-organic framework for oxygen evolution reaction
    Hu, Xiabing
    Wang, Haoye
    Qi, Songya
    Su, Zilong
    Wang, Jiajun
    Chen, Kaixuan
    Li, Shuji
    Huang, Xuan
    Luo, Shiping
    Xie, Aijuan
    IONICS, 2022, 28 (02) : 813 - 821
  • [4] A hybrid Co NPs@CNT nanocomposite as highly efficient electrocatalyst for oxygen evolution reaction
    Huang, Chao
    Zhang, Biao
    Luo, Yang
    Xiao, Dezhi
    Tang, Kaiwei
    Ruan, Qingdong
    Yang, Yixuan
    Gao, Biao
    Chu, Paul K.
    APPLIED SURFACE SCIENCE, 2020, 507
  • [5] High-Entropy Metal-Organic Framework Electrocatalyst for Efficient Oxygen Evolution Reaction
    Long, Hui
    Li, Yi-Na
    Yang, Wen-Jun
    Zhang, Li-Song
    Wang, Hong-Yun
    CATALYSIS LETTERS, 2025, 155 (03)
  • [6] Metal-Organic Framework-Derived Atomically Dispersed Co-N-C Electrocatalyst for Efficient Oxygen Reduction Reaction
    Ge, Dongqi
    Liao, Longfei
    Li, Mingyu
    Yin, Yongli
    CATALYSTS, 2022, 12 (11)
  • [7] Metal-organic framework derived NiMo polyhedron as an efficient hydrogen evolution reaction electrocatalyst
    Karuppasamy, K.
    Jothi, Vasanth Rajendiran
    Vikraman, Dhanasekaran
    Prasanna, K.
    Maiyalagan, T.
    Sang, Byoung-In
    Yi, Sung-Chul
    Kim, Hyun-Seok
    APPLIED SURFACE SCIENCE, 2019, 478 : 916 - 923
  • [8] Metal-Organic Frameworks Derived Electrocatalysts for Oxygen and Carbon Dioxide Reduction Reaction
    Najam, Tayyaba
    Khan, Naseem Ahmad
    Shah, Syed Shoaib Ahmad
    Ahmad, Khalil
    Javed, Muhammad Sufyan
    Suleman, Suleman
    Bashir, Muhammad Sohail
    Hasnat, Mohammad A.
    Rahman, Mohammed M.
    CHEMICAL RECORD, 2022, 22 (07)
  • [9] Trimetallic Co-Ni-Mn metal-organic framework as an efficient electrocatalyst for alkaline oxygen evolution reaction
    Taherinia, D.
    Hatami, H.
    Valadi, F. Mirzaee
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 922
  • [10] A pair of metal organic framework (MOF)-derived oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts for zinc-air batteries
    Agarwal, Soham
    Yu, Xingwen
    Manthiram, Arumugam
    MATERIALS TODAY ENERGY, 2020, 16