This paper presents an extension of convex Bernstein approximations to non-affine and dependent chance constrained optimization problems. The Bernstein approximation technique transcribes probabilistic constraints into conservative convex deterministic constraints, relying heavily upon the evaluation of exponential moment generating functions. This is a computationally burdensome task for non-affine probabilistic constraints involving dependent random variables. In this paper, the theoretical framework of Bernstein approximations is combined with the practical benefits of Markov chain Monte Carlo (MCMC) integration for its use in a range of high dimensional applications. Numerical results for the combined Bernstein/MCMC approach are compared with scenario approximations.
机构:
Calif State Univ Long Beach, Dept Chem Engn, Long Beach, CA 90840 USACalif State Univ Long Beach, Dept Chem Engn, Long Beach, CA 90840 USA
Yang, Yu
Sutanto, Christie
论文数: 0引用数: 0
h-index: 0
机构:
Calif State Univ Long Beach, Dept Chem Engn, Long Beach, CA 90840 USA
Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA USACalif State Univ Long Beach, Dept Chem Engn, Long Beach, CA 90840 USA
机构:
Calif State Univ Long Beach, Dept Chem Engn, Long Beach, CA 90840 USACalif State Univ Long Beach, Dept Chem Engn, Long Beach, CA 90840 USA
Yang, Yu
Sutanto, Christie
论文数: 0引用数: 0
h-index: 0
机构:
Calif State Univ Long Beach, Dept Chem Engn, Long Beach, CA 90840 USA
Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA USACalif State Univ Long Beach, Dept Chem Engn, Long Beach, CA 90840 USA