Effect of tempering temperature at high temperature zone on sulfide stress cracking behavior for casing steel

被引:16
作者
Luo, M. [1 ,3 ]
Liu, M. [2 ]
Wang, X. T. [1 ]
Li, M. C. [1 ]
Li, X. [1 ]
Ren, Z. M. [1 ]
Cao, G. H. [1 ]
Zhang, Z. H. [3 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, 99 Shangda Rd, Shanghai 200444, Peoples R China
[2] Shanghai Inst Technol, Sch Mat Sci & Engn, 100 Haiquan Rd, Shanghai 201418, Peoples R China
[3] Baoshan Iron & Steel Co Ltd, Tube & Pipe Dept, Baosteel Res Inst, Shanghai 201900, Peoples R China
关键词
Casing steel; Tempering temperature; Sulfide stress cracking; Dislocation; HYDROGEN-INDUCED CRACKING; PIPELINE STEEL; MICROSTRUCTURE; EMBRITTLEMENT; INCLUSIONS; RESISTANCE; EVOLUTION; TRANSPORT; METALS; TRAPS;
D O I
10.1016/j.engfailanal.2019.06.095
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Three tempering temperatures at high temperature zone (690 degrees C, 700 degrees C and 710 degrees C) are selected into the quenching-and-tempering processes and performed on the rolled Cr-Mo steel to develop API-SCT-C110 casing steels. Effect of tempering temperature on sulfide stress cracking (SSC) behavior is quantitatively evaluated and further explored by characterizing the microstructure and crystallography. The results show that the strength of steel decreases with tempering temperature, but the SSC susceptibility is reversely varied. EBSD analysis indicates that the steel tempered at lower temperature (690 degrees C) generates more grains with high Taylor factors, which are difficult to yield, leading to the increasing of dislocation density and more susceptible to SSC.
引用
收藏
页码:227 / 236
页数:10
相关论文
共 47 条
[1]   EVIDENCE FOR DISLOCATION TRANSPORT OF HYDROGEN IN ALUMINUM [J].
ALBRECHT, J ;
BERNSTEIN, IM ;
THOMPSON, AW .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1982, 13 (05) :811-820
[2]  
[Anonymous], 2011, 5CT API SPEC
[3]  
[Anonymous], 2005, TM01772005 NACE
[4]  
[Anonymous], 2006, STEEL
[5]   A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies [J].
Arafin, M. A. ;
Szpunar, J. A. .
CORROSION SCIENCE, 2009, 51 (01) :119-128
[6]  
BASTIEN P, 1951, CR HEBD ACAD SCI, V232, P1845
[7]   Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking [J].
Beidokhti, B. ;
Dolati, A. ;
Koukabi, A. H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 507 (1-2) :167-173
[8]   Sensitivity of pipelines with steel API X52 to hydrogen embrittlement [J].
Capelle, J. ;
Gilgert, J. ;
Dmytrakh, I. ;
Pluvinage, G. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (24) :7630-7641
[9]   The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking [J].
Carneiro, RA ;
Ratnapuli, RC ;
Lins, VD .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 357 (1-2) :104-110
[10]  
Dvoracek L., 1970, Corrosion, V26, P177, DOI [10.5006/0010-9312-26.5.177, DOI 10.5006/0010-9312-26.5.177]