Dark and antidark solitons in the modified nonlinear Schroumldinger equation accounting for the self-steepening effect

被引:58
作者
Li, Min [1 ]
Tian, Bo [1 ,2 ,3 ]
Liu, Wen-Jun [1 ]
Zhang, Hai-Qiang [1 ]
Wang, Pan [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Informat Photon & Opt Commun BUPT, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
DISPERSIVE DIELECTRIC FIBERS; ION-ACOUSTIC-WAVES; OPTICAL-FIBERS; BACKLUND TRANSFORMATION; SCHRODINGER-EQUATION; PULSE PROPAGATION; TRANSMISSION; NEBULONS; MODEL; BRIGHTONS;
D O I
10.1103/PhysRevE.81.046606
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, the modified nonlinear Schroumldinger equation is investigated, which describes the femtosecond optical pulse propagation in a monomodal optical fiber. Based on the Wadati-Konno-Ichikawa system, another type of Lax pair and infinitely many conservation laws are derived. Dark and antidark soliton solutions in the normal dispersion regime are obtained by means of the Hirota method. Parametric regions for the existence of the dark and antidark soliton solutions are given. Asymptotic analysis of the two-soliton solution shows that collisions between two solitons (two antidark solitons, two dark solitons, and dark and antidark solitons) are elastic. In addition, collision between dark and antidark solitons reveals that dark and antidark solitons can co-exist on the same background in the normal dispersion regime.
引用
收藏
页数:8
相关论文
共 59 条
[1]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]  
Agrawal G.P., 2002, Nonlinear fiber optics
[3]   NON-LINEAR ASYMMETRIC PULSE DISTORTION IN LONG OPTICAL FIBERS [J].
ANDERSON, D ;
LISAK, M .
OPTICS LETTERS, 1982, 7 (08) :394-396
[4]   Symbolic calculation in chemistry: Selected examples [J].
Barnett, MP ;
Capitani, JF ;
von zur Gathen, J ;
Gerhard, J .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 100 (02) :80-104
[5]   MULTIPLE DARK SOLITON-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
BLOW, KJ ;
DORAN, NJ .
PHYSICS LETTERS A, 1985, 107 (02) :55-58
[6]   EXPLICIT N-SOLITON SOLUTION OF THE MODIFIED NONLINEAR SCHRODINGER-EQUATION [J].
CHEN, ZY ;
HUANG, NN .
PHYSICAL REVIEW A, 1990, 41 (07) :4066-4069
[7]   EXACT RADIAL DEPENDENCE OF THE FIELD IN A NONLINEAR DISPERSIVE DIELECTRIC FIBER - BRIGHT PULSE SOLUTIONS [J].
CHRISTODOULIDES, DN ;
JOSEPH, RI .
OPTICS LETTERS, 1984, 9 (06) :229-231
[8]   Analytical solution for the modified nonlinear Schrodinger equation describing optical shock formation [J].
de Oliveira, JR ;
de Moura, MA .
PHYSICAL REVIEW E, 1998, 57 (04) :4751-4756
[9]   PICOSECOND STEPS AND DARK PULSES THROUGH NONLINEAR SINGLE-MODE FIBERS [J].
EMPLIT, P ;
HAMAIDE, JP ;
REYNAUD, F ;
FROEHLY, C ;
BARTHELEMY, A .
OPTICS COMMUNICATIONS, 1987, 62 (06) :374-379
[10]   Small-amplitude solitary structures for an extended nonlinear Schrodinger equation [J].
Frantzeskakis, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (13) :3631-3639