On the Additive Properties of the Fat-Shattering Dimension

被引:2
作者
Asor, Ohad [1 ]
Duan, Hubert Haoyang [2 ]
Kontorovich, Aryeh [3 ]
机构
[1] Adv Comp Res & Dev, IL-76124 Rehovot, Israel
[2] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[3] Ben Gurion Univ Negev, Dept Comp Sci, IL-84105 Beer Sheva, Israel
基金
以色列科学基金会;
关键词
Combinatorial dimension; fat-shattering; Minkowski addition; scale-sensitive; UNIFORM-CONVERGENCE;
D O I
10.1109/TNNLS.2014.2327065
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The properties of the VC-dimension under various compositions are well-understood, but this is much less the case for classes of continuous functions. In this brief, we show that a commonly used scale-sensitive dimension, V-gamma, is much less well-behaved under Minkowski summation than its VC cousin, while the fat-shattering dimension retains some compositional similarity to the VC-dimension. As an application, we analyze the fat-shattering dimension of trigonometric functions and series.
引用
收藏
页码:2309 / 2312
页数:4
相关论文
共 23 条
[1]   Scale-sensitive dimensions, uniform convergence, and learnability [J].
Alon, N ;
BenDavid, S ;
CesaBianchi, N ;
Haussler, D .
JOURNAL OF THE ACM, 1997, 44 (04) :615-631
[2]  
Bartlett P. L., 2003, Journal of Machine Learning Research, V3, P463, DOI 10.1162/153244303321897690
[3]   Prediction, learning, uniform convergence, and scale-sensitive dimensions [J].
Bartlett, PL ;
Long, PM .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1998, 56 (02) :174-190
[4]   What Size Net Gives Valid Generalization? [J].
Baum, Eric B. ;
Haussler, David .
NEURAL COMPUTATION, 1989, 1 (01) :151-160
[5]   LEARNABILITY AND THE VAPNIK-CHERVONENKIS DIMENSION [J].
BLUMER, A ;
EHRENFEUCHT, A ;
HAUSSLER, D ;
WARMUTH, MK .
JOURNAL OF THE ACM, 1989, 36 (04) :929-965
[6]  
Boucheron S, 2005, ESAIM Probab. Stat., V9, P323, DOI DOI 10.1051/PS:2005018
[7]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[8]  
Duan H. H., 2012, WATERLOO MATH REV, V2, P4
[9]   Boosting methods for regression [J].
Duffy, N ;
Helmbold, D .
MACHINE LEARNING, 2002, 47 (2-3) :153-200
[10]   The VC dimension of k-fold union [J].
Eisenstat, David ;
Angluin, Dana .
INFORMATION PROCESSING LETTERS, 2007, 101 (05) :181-184