The complex Monge-Ampere operator in the Cegrell classes

被引:0
作者
Czyz, Rafal [1 ]
机构
[1] Jagiellonian Univ, Inst Math, PL-30348 Krakow, Poland
关键词
Complex Monge-Ampere operator; Dirichlet problem; pluripolar set; plurisubharmonic function; pluriharmonic function; DIRICHLET PROBLEM; PLURISUBHARMONIC-FUNCTIONS; SUBEXTENSION; DEFINITION; CONVERGENCE; CONTINUITY; ENVELOPES; EXTENSION; PRINCIPLE; CAPACITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The complex Monge-Ampere operator is a useful tool not only within pluripotential theory, but also in algebraic geometry, dynamical systems and Kahler geometry. In this self-contained survey we present a unified theory of Cegrell's framework for the complex Monge-Ampere operator
引用
收藏
页码:5 / +
页数:79
相关论文
共 84 条
[61]  
HED L, INT J MATH IN PRESS
[62]   Convergence in capacity [J].
Hiep, Pham Hoang .
ANNALES POLONICI MATHEMATICI, 2008, 93 (01) :91-99
[63]  
HORMANDER L, 1996, NOTIONS CONVEXITY
[64]  
Kiselman C.O., 2000, PLURISUBHARMONIC FUN, P655
[65]  
KISELMAN CO, 1984, LECT NOTES MATH, V1094, P139
[66]  
Klimek M., 1982, ZESZYTY NAUK U JAGIE, V23, P27
[67]  
Kolodziej S, 1995, INDIANA U MATH J, V44, P765
[68]  
LELONG P, 1983, LECT NOTES MATH, V1028, P219
[69]  
Nguyen VK, 2009, T AM MATH SOC, V361, P5539
[70]   A Dirichlet principle for the complex Monge-Ampere operator [J].
Persson, L .
ARKIV FOR MATEMATIK, 1999, 37 (02) :345-356