The complex Monge-Ampere operator in the Cegrell classes

被引:0
作者
Czyz, Rafal [1 ]
机构
[1] Jagiellonian Univ, Inst Math, PL-30348 Krakow, Poland
关键词
Complex Monge-Ampere operator; Dirichlet problem; pluripolar set; plurisubharmonic function; pluriharmonic function; DIRICHLET PROBLEM; PLURISUBHARMONIC-FUNCTIONS; SUBEXTENSION; DEFINITION; CONVERGENCE; CONTINUITY; ENVELOPES; EXTENSION; PRINCIPLE; CAPACITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The complex Monge-Ampere operator is a useful tool not only within pluripotential theory, but also in algebraic geometry, dynamical systems and Kahler geometry. In this self-contained survey we present a unified theory of Cegrell's framework for the complex Monge-Ampere operator
引用
收藏
页码:5 / +
页数:79
相关论文
共 84 条
[1]   The hyperbolic geometry of the symmetrized bidisc [J].
Agler, J ;
Young, NJ .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (03) :375-403
[2]   Partial pluricomplex energy and integrability exponents of plurisubharmonic functions [J].
Ahag, P. ;
Cegrell, U. ;
Kolodziej, S. ;
Pham, H. H. ;
Zeriahi, A. .
ADVANCES IN MATHEMATICS, 2009, 222 (06) :2036-2058
[3]  
AHAG P, 2002, THESIS UMEA U
[4]   Continuous pluriharmonic boundary values [J].
Ahag, Per ;
Czyz, Rafal .
ANNALES POLONICI MATHEMATICI, 2007, 91 (2-3) :99-117
[5]   A Dirichlet problem for the complex Monge-Ampere operator in F(f) [J].
Ahag, Per .
MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (01) :123-138
[6]   On the Cegrell classes [J].
Ahag, Per ;
Czyz, Rafal .
MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (02) :243-264
[7]   Monge-Ampere measures on pluripolar sets [J].
Ahag, Per ;
Cegrell, Urban ;
Czyz, Rafal ;
Pham Hoang Hiep .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 92 (06) :613-627
[8]  
[Anonymous], 1993, Bull. Polish Acad. Sci. Math
[9]  
[Anonymous], 2004, Ann. Polon. Math
[10]  
[Anonymous], 2005, MEMOIRS AMS