An adaptive template matching-based single object tracking algorithm with parallel acceleration

被引:16
作者
Yan, Baicheng [1 ]
Xiao, Limin [1 ]
Zhang, Hang [2 ]
Xu, Daliang [3 ]
Ruan, Li [1 ]
Wang, Zhaokai [1 ]
Zhang, Yiyang [1 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, XueYuan Rd 37, Beijing 100191, Peoples R China
[2] Sci & Technol Complex Syst Control & Intelligent, Beijing, Peoples R China
[3] Peking Univ, Sch Elect Engn & Comp Sci, 5 Yiheyuan Rd, Beijing 10087, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Visual object tracking; Adaptive template update; Parallel acceleration; Deep learning; Embedded platform; CAROTID-ARTERY WALL; MEAN-SHIFT; ROBUST ESTIMATION; FILTERS;
D O I
10.1016/j.jvcir.2019.102603
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing template matching based visual object tracking algorithms usually require to manually update the template and have high execution cost on general embedded systems. To address these issues, an adaptive template matching-based single object tracking algorithm with parallel acceleration is proposed in this paper. In this algorithm, we propose an adaptive single object tracking algorithm framework to achieve template update online. Based on the Faster-RCNN model, we design a single object capture method to update the template. Meanwhile, we present a parallel strategy to accelerate the process of template matching. To evaluate the proposed algorithm, we use OTB benchmark to compare the performance with several state-of-the-art trackers on TX2 embedded platform. Experimental results show that the proposed method achieves a 5.9 times execution speed and 71.9% accuracy improvement over the comparison methods. (C) 2019 Published by Elsevier Inc.
引用
收藏
页数:13
相关论文
共 74 条
[1]   Real-time edge-enhanced dynamic correlation and predictive open-loop car-following control for robust tracking [J].
Ahmed, Javed ;
Jafri, M. N. ;
Shah, Mubarak ;
Akbar, Muhammad .
MACHINE VISION AND APPLICATIONS, 2008, 19 (01) :1-25
[2]   Visual object tracking-classical and contemporary approaches [J].
Ali, Ahmad ;
Jalil, Abdul ;
Niu, Jianwei ;
Zhao, Xiaoke ;
Rathore, Saima ;
Ahmed, Javed ;
Aksam Iftikhar, Muhammad .
FRONTIERS OF COMPUTER SCIENCE, 2016, 10 (01) :167-188
[3]   A novel rotation/scale invariant template matching algorithm using weighted adaptive lifting scheme transform [J].
Amiri, M. ;
Rabiee, H. R. .
PATTERN RECOGNITION, 2010, 43 (07) :2485-2496
[4]  
[Anonymous], OPTICAL ENG
[5]  
[Anonymous], CIRC SYST LASCAS 201
[6]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[7]   Robust Object Tracking with Online Multiple Instance Learning [J].
Babenko, Boris ;
Yang, Ming-Hsuan ;
Belongie, Serge .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1619-1632
[8]  
Baggio D., 2017, MASTERING OPENCV 3
[9]   Proving the efficiency of template matching-based markerless tracking methods which consider the camera perspective deformations [J].
Barrena, Nagore ;
Sanchez, Jairo R. ;
Ugarte, Ramon J. ;
Garcia Alonso, Alejandro .
MACHINE VISION AND APPLICATIONS, 2018, 29 (04) :573-584
[10]  
Beleznai C, 2005, INT C IM PROC SING, V1, P349