Divergent roles for IRS-1 and IRS-2 in breast cancer metastasis

被引:89
作者
Gibson, Shannon L. [1 ]
Ma, Zhefu [1 ]
Shaw, Leslie M. [1 ]
机构
[1] Univ Massachusetts, Dept Canc Biol, Sch Med, Worcester, MA 01605 USA
关键词
metastasis; IRS-1; IRS-2; breast cancer; invasion;
D O I
10.4161/cc.6.6.3987
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The insulin receptor substrate (IRS) proteins are cytoplasmic docking proteins that function as essential signaling intermediates downstream of activated cell surface receptors, many of which have been implicated in breast cancer. The IRS proteins do not contain intrinsic kinase activity but rather function by organizing signaling complexes to initiate intracellular signaling cascades. IRS-1 and IRS-2 are expressed in normal mammary epithelial cells and in breast carcinoma cells, where they have been implicated in mediating signals to promote tumor cell survival, growth and motility. Although IRS-1 and IRS-2 are homologous, recent studies have revealed distinct functions for these adaptor proteins in regulating breast cancer progression. Specifically, IRS-2 is a positive regulator of metastasis, whereas IRS-1 may be a suppressor of metastasis. The observation that IRS-1 is inactivated in metastatic mammary tumors raises the possibility that IRS activity, rather than expression, may be a novel predictive indicator of metastasis. Understanding how the IRS proteins function in tumor progression is essential for future efforts aimed at developing approaches to target IRS-1 and IRS-2 in a diagnostic or therapeutic manner for the benefit of breast cancer patients.
引用
收藏
页码:631 / 637
页数:7
相关论文
共 95 条
[1]   Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action [J].
Aguirre, V ;
Werner, ED ;
Giraud, J ;
Lee, YH ;
Shoelson, SE ;
White, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (02) :1531-1537
[2]   The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307 [J].
Aguirre, V ;
Uchida, T ;
Yenush, L ;
Davis, R ;
White, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (12) :9047-9054
[3]   ALTERNATIVE PATHWAY OF INSULIN SIGNALING IN MICE WITH TARGETED DISRUPTION OF THE IRS-1 GENE [J].
ARAKI, E ;
LIPES, MA ;
PATTI, ME ;
BRUNING, JC ;
HAAG, B ;
JOHNSON, RS ;
KAHN, CR .
NATURE, 1994, 372 (6502) :186-190
[4]   GROWTH-HORMONE, INTERFERON-GAMMA, AND LEUKEMIA INHIBITORY FACTOR PROMOTED TYROSYL PHOSPHORYLATION OF INSULIN-RECEPTOR SUBSTRATE-1 [J].
ARGETSINGER, LS ;
HSU, GW ;
MYERS, MG ;
BILLESTRUP, N ;
WHITE, MF ;
CARTERSU, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (24) :14685-14692
[5]   In vitro binding and phosphorylation of insulin receptor substrate 1 by the insulin receptor - Role of interactions mediated by the phosphotyrosine-binding domain and the pleckstrin-homology domain [J].
Backer, JM ;
Wjasow, C ;
Zhang, YT .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 245 (01) :91-96
[6]   Divergent signaling capacities of the long and short isoforms of the leptin receptor [J].
Bjorbaek, C ;
Uotani, S ;
da Silva, B ;
Flier, JS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32686-32695
[7]   Absence of functional insulin receptor substrate-3 (IRS-3) gene in humans [J].
Björnholm, M ;
He, AR ;
Attersand, A ;
Lake, S ;
Liu, SCH ;
Lienhard, GE ;
Taylor, S ;
Arner, P ;
Zierath, JR .
DIABETOLOGIA, 2002, 45 (12) :1697-1702
[8]   Overexpression of insulin receptor substrate-2 in human and murine hepatocellular carcinoma [J].
Boissan, M ;
Beurel, E ;
Wendum, D ;
Rey, C ;
Lécluse, Y ;
Housset, C ;
Lacombe, ML ;
Desbois-Mouthon, C .
AMERICAN JOURNAL OF PATHOLOGY, 2005, 167 (03) :869-877
[9]   Hypoxia and oxidative stress in breast cancer - Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer [J].
Brown, NS ;
Bicknell, R .
BREAST CANCER RESEARCH, 2001, 3 (05) :323-327
[10]   Janus kinase-dependent activation of insulin receptor substrate 1 in response to interleukin-4, oncostatin M, and the interferons [J].
Burfoot, MS ;
Rogers, NC ;
Watling, D ;
Smith, JM ;
Pons, S ;
Paonessaw, G ;
Pellegrini, S ;
White, MF ;
Kerr, IM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (39) :24183-24190