A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation

被引:28
作者
Eghbali, Nasrin [1 ]
Kalvandi, Vida [1 ]
Rassias, John M. [2 ]
机构
[1] Univ Mohaghegh Ardabili, Fac Math Sci, Dept Math, Ardebil 5619911367, Iran
[2] Natl & Capodistrian Univ Athens, Sect Math & Informat, Pedag Dept EE, 4 Agamemnonos Str, Athens 15342, Greece
关键词
Fractional order delay integral equation; Mittag-Leffler-Hyers-Ulam stability; Chebyshev norm; Bielecki norm; DIFFERENTIAL-EQUATIONS;
D O I
10.1515/math-2016-0019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we have presented and studied two types of the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation. We prove that the fractional order delay integral equation is Mittag-Leffler-Hyers-Ulam stable on a compact interval with respect to the Chebyshev and Bielecki norms by two notions.
引用
收藏
页码:237 / 246
页数:10
相关论文
共 24 条
[1]  
[Anonymous], 2011, ELECTRON J QUAL THEO
[2]  
[Anonymous], 2006, THEORY APPL FRACTION, DOI DOI 10.1016/S0304-0208(06)80001-0
[3]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[6]   Fractional complex transforms for fractional differential equations [J].
Ibrahim, Rabha W. .
ADVANCES IN DIFFERENCE EQUATIONS, 2012,
[7]   GENERALIZED ULAM-HYERS STABILITY FOR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Ibrahim, Rabha W. .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (05)
[8]  
Jung SM, 2010, B MALAYS MATH SCI SO, V33, P47
[9]  
Peng Sh., 2015, ELECTRON J QUAL THEO, V52, P1, DOI DOI 10.14232/EJQTDE.2015.1.52
[10]  
Rassias J. M., 1994, J. Math. Phys. Sci., V28, P231