Liquid Crystalline Polyimide Films with High Intrinsic Thermal Conductivities and Robust Toughness

被引:176
作者
Ruan, Kunpeng [1 ]
Guo, Yongqiang [1 ]
Gu, Junwei [1 ]
机构
[1] Northwestern Polytech Univ, Sch Chem & Chem Engn, Shaanxi Key Lab Macromol Sci & Technol, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
EPOXY-RESIN; DIANHYDRIDE; COMPOSITES; BEHAVIOR;
D O I
10.1021/acs.macromol.1c00686
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Low intrinsic thermal conductivity coefficients (lambda) of polyimide (PI) films limit their application in heat-prone flexible electronics. By optimizing the liquid crystal range to fit the curing temperature, novel kinds of intrinsically highly thermally conductive liquid crystalline PI (LC-PI) films are fabricated. When the molar ratio of 4,4'- diaminodiphenyl ether (ODA) to 1, 4-bis(4-aminophenoxy)benzene (TPE-Q) is 1:3 (sample no. IV), liquid crystal range of preLC-PIIV films is 272 similar to 388 degrees C, including curing temperature of 350 degrees C. The LC-PIIV films cured in liquid crystal range retain liquid crystal texture to room temperature, and the in-plane lambda(lambda(parallel to)) and through-plane lambda (lambda(perpendicular to)) at room temperature reach 2.11 W/(m.K) and 0.32 W/(m.K), respectively, significantly higher than lambda(parallel to) (0.77 W/(m.K)) and lambda(perpendicular to) (0.15 W/(m.K)) of LC-PII films which are cured out of the liquid crystal range. Meanwhile, LC-PIIV films possess excellent mechanical and thermal properties, showing application prospects in high-heating flexible electronics.
引用
收藏
页码:4934 / 4944
页数:11
相关论文
共 56 条
[1]   Highly thermally conductive electrospun stereocomplex polylactide fibrous film dip-coated with silver nanowires [J].
Bai, Lu ;
Zhang, Zheng-Min ;
Pu, Jun-Hong ;
Feng, Chang-Ping ;
Zhao, Xing ;
Bao, Rui-Ying ;
Liu, Zheng-Ying ;
Yang, Ming-Bo ;
Yang, Wei .
POLYMER, 2020, 194
[2]   Polyimide precursor pattern induced by banded liquid crystal matrix: Effect of dianhydride moieties flexibility [J].
Barzic, Andreea Irina ;
Hulubei, Camelia ;
Avadanei, Mihaela Iuliana ;
Stoica, Iuliana ;
Popovici, Dumitru .
JOURNAL OF MATERIALS SCIENCE, 2015, 50 (03) :1358-1369
[3]  
Chen J., 2020, ENG SCI, V12, P13, DOI DOI 10.30919/ES8D1129
[4]   Highly Compressible and Robust Polyimide/Carbon Nanotube Composite Aerogel for High-Performance Wearable Pressure Sensor [J].
Chen, Xiaoyu ;
Liu, Hu ;
Zheng, Yanjun ;
Zhai, Yue ;
Liu, Xianhu ;
Liu, Chuntai ;
Mi, Liwei ;
Guo, Zhanhu ;
Shen, Changyu .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (45) :42594-42606
[5]   Enhanced Thermal Conductivity of Bioinspired Nanofibrillated Cellulose Hybrid Films Based on Graphene Sheets and Nanodiamonds [J].
Cui, Siqi ;
Song, Na ;
Shi, Liyi ;
Ding, Peng .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (16) :6363-6370
[6]   Superior thermal interface materials for thermal management [J].
Feng, Chang Ping ;
Bai, Lu ;
Bao, Rui-Ying ;
Wang, Shi-Wei ;
Liu, Zhengying ;
Yang, Ming-Bo ;
Chen, Jun ;
Yang, Wei .
COMPOSITES COMMUNICATIONS, 2019, 12 :80-85
[7]   Recent advances in polymer-based thermal interface materials for thermal management: A mini-review [J].
Feng, Chang-Ping ;
Yang, Lu-Yao ;
Yang, Jie ;
Bai, Lu ;
Bao, Rui-Ying ;
Liu, Zheng-Ying ;
Yang, Ming-Bo ;
Lan, Hong-Bo ;
Yang, Wei .
COMPOSITES COMMUNICATIONS, 2020, 22
[8]   Advances in Polyimide-Based Materials for Space Applications [J].
Gouzman, Irina ;
Grossman, Eitan ;
Verker, Ronen ;
Atar, Nurit ;
Bolker, Asaf ;
Eliaz, Noam .
ADVANCED MATERIALS, 2019, 31 (18)
[9]   Breaking Through Bottlenecks for Thermally Conductive Polymer Composites: A Perspective for Intrinsic Thermal Conductivity, Interfacial Thermal Resistance and Theoretics [J].
Gu, Junwei ;
Ruan, Kunpeng .
NANO-MICRO LETTERS, 2021, 13 (01)
[10]   Factors affecting thermal conductivities of the polymers and polymer composites: A review [J].
Guo, Yongqiang ;
Ruan, Kunpeng ;
Shi, Xuetao ;
Yang, Xutong ;
Gu, Junwei .
COMPOSITES SCIENCE AND TECHNOLOGY, 2020, 193