Tertiary and Secondary Structure Elasticity of a Six-Ig Titin Chain

被引:25
作者
Lee, Eric H. [1 ,2 ,3 ]
Hsin, Jen [2 ,4 ]
von Castelmur, Eleonore [5 ]
Mayans, Olga [5 ]
Schulten, Klaus [1 ,2 ,4 ]
机构
[1] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
[3] Univ Illinois, Coll Med, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[5] Univ Liverpool, Sch Biol Sci, Liverpool L69 3BX, Merseyside, England
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
STEERED MOLECULAR-DYNAMICS; IMMUNOGLOBULIN DOMAINS; IG DOMAIN; PROTEIN; FORCE; MECHANICS; SIMULATIONS; STRENGTH; ADHESION; AFM;
D O I
10.1016/j.bpj.2009.12.4192
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The protein titin functions as a mechanical spring conferring passive elasticity to muscle. Force spectroscopy studies have shown that titin exhibits several regimes of elasticity. Disordered segments bring about a soft, entropic spring-type elasticity; secondary structures of titin's immunoglobulin-like (Ig-) and fibronectin type III-like (FN-III) domains provide a stiff elasticity. In this study, we demonstrate a third type of elasticity due to tertiary structure and involving domain-domain interaction and reorganization along the titin chain. Through 870 ns of molecular dynamics simulations involving 29,000-635,000 atom systems, the mechanical properties of a six-Ig domain segment of titin (I65-I70), for which a crystallographic structure is available, are probed. The results reveal a soft tertiary structure elasticity. A remarkably accurate statistical mechanical description for this elasticity is-derived and applied. Simulations also studied the stiff, secondary structure elasticity of the I65-I70 chain due to the unraveling of its domains and revealed how force propagates along the chain during the secondary structure elasticity response.
引用
收藏
页码:1085 / 1095
页数:11
相关论文
共 51 条
[11]   Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates [J].
Gao, M ;
Craig, D ;
Lequin, O ;
Campbell, ID ;
Vogel, V ;
Schulten, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (25) :14784-14789
[12]   Unfolding of titin domains studied by molecular dynamics simulations [J].
Gao, M ;
Lu, H ;
Schulten, K .
JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY, 2002, 23 (5-6) :513-521
[13]   Steered molecular dynamics studies of titin I1 domain unfolding [J].
Gao, M ;
Wilmanns, M ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2002, 83 (06) :3435-3445
[14]   Molecular mechanisms of cellular mechanics [J].
Gao, Mu ;
Sotomayor, Marcos ;
Villa, Elizabeth ;
Lee, Eric H. ;
Schulten, Klaus .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (32) :3692-3706
[15]   The giant protein titin - A major player in myocardial mechanics, signaling, and disease [J].
Granzier, HL ;
Labeit, S .
CIRCULATION RESEARCH, 2004, 94 (03) :284-295
[16]   Modulation of Titin-Based Stiffness by Disulfide Bonding in the Cardiac Titin N2-B Unique Sequence [J].
Gruetzner, Anika ;
Garcia-Manyes, Sergi ;
Koetter, Sebastian ;
Badilla, Carmen L. ;
Fernandez, Julio M. ;
Linke, Wolfgang A. .
BIOPHYSICAL JOURNAL, 2009, 97 (03) :825-834
[17]   Overcoming free energy barriers using unconstrained molecular dynamics simulations [J].
Hénin, J ;
Chipot, C .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (07) :2904-2914
[18]   Steered molecular dynamics and mechanical functions of proteins [J].
Isralewitz, B ;
Gao, M ;
Schulten, K .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2001, 11 (02) :224-230
[19]   Molecular dynamics study of unbinding of the avidin-biotin complex [J].
Izrailev, S ;
Stepaniants, S ;
Balsera, M ;
Oono, Y ;
Schulten, K .
BIOPHYSICAL JOURNAL, 1997, 72 (04) :1568-1581
[20]   COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR SIMULATING LIQUID WATER [J].
JORGENSEN, WL ;
CHANDRASEKHAR, J ;
MADURA, JD ;
IMPEY, RW ;
KLEIN, ML .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (02) :926-935