Diagnosing a disorder in a classification benchmark

被引:44
|
作者
McDermott, James [1 ]
Forsyth, Richard S. [1 ]
机构
[1] Univ Coll Dublin, Coll Business, Management Informat Syst, Dublin, Ireland
关键词
Machine learning; Classification; UCI; BUPA liver disorder; Benchmarks;
D O I
10.1016/j.patrec.2016.01.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A large majority of the many hundreds of papers which use the UCI BUPA Liver Disorders data set as a benchmark for classification misunderstand the data and use an unsuitable dependent variable. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 43
页数:3
相关论文
共 50 条
  • [41] The role of psychiatrists in diagnosing conversion disorder: a mixed-methods analysis
    Kanaan, Richard A.
    Armstrong, David
    Wessely, Simon
    NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2016, 12 : 1181 - 1184
  • [42] Diagnosis and classification of pediatric bipolar disorder
    Staton, Dennis
    Volness, Linda Jo
    Beatty, William W.
    JOURNAL OF AFFECTIVE DISORDERS, 2008, 105 (1-3) : 205 - 212
  • [43] Controversies Surrounding Classification of Personality Disorder
    Kim, Youl-Ri
    Tyrer, Peter
    PSYCHIATRY INVESTIGATION, 2010, 7 (01) : 1 - 8
  • [44] Mood patterns and classification in bipolar disorder
    Benazzi, F
    CURRENT OPINION IN PSYCHIATRY, 2006, 19 (01) : 1 - 8
  • [45] A Framework for Diagnosing Kidney Disease in Diabetes Patients Using Classification Algorithms
    Prasad K.S.
    Reddy N.C.S.
    Puneeth B.N.
    SN Computer Science, 2020, 1 (2)
  • [46] Role of personal characteristics data for classification of attention-deficit hyperactivity disorder
    Lohani, Dhruv Chandra
    Rana, Bharti
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2024, 18 (03): : 2559 - 2575
  • [47] A Review of Machine Learning Methods of Feature Selection and Classification for Autism Spectrum Disorder
    Rahman, Md. Mokhlesur
    Usman, Opeyemi Lateef
    Muniyandi, Ravie Chandren
    Sahran, Shahnorbanun
    Mohamed, Suziyani
    Razak, Rogayah A.
    BRAIN SCIENCES, 2020, 10 (12) : 1 - 23
  • [48] From pattern classification to stratification: towards conceptualizing the heterogeneity of Autism Spectrum Disorder
    Wolfers, Thomas
    Floris, Dorothea L.
    Dinga, Richard
    van Rooij, Daan
    Isakoglou, Christina
    Kia, Seyed Mostafa
    Zabihi, Mariam
    Llera, Alberto
    Chowdanayaka, Rajanikanth
    Kumar, Vinod J.
    Peng, Han
    Laidi, Charles
    Batalle, Dafnis
    Dimitrova, Ralica
    Charman, Tony
    Loth, Eva
    Lai, Meng-Chuan
    Jones, Emily
    Baumeister, Sarah
    Moessnang, Carolin
    Banaschewski, Tobias
    Ecker, Christine
    Dumas, Guillaume
    O'Muircheartaigh, Jonathan
    Murphy, Declan
    Buitelaar, Jan K.
    Marquand, Andre F.
    Beckmann, Christian F.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2019, 104 : 240 - 254
  • [49] SDFC dataset: a large-scale benchmark dataset for hyperspectral image classification
    Liwei Sun
    Junjie Zhang
    Jia Li
    Yueming Wang
    Dan Zeng
    Optical and Quantum Electronics, 2023, 55
  • [50] Seizure Type Classification Using EEG Signals and Machine Learning: Setting a Benchmark
    Roy, S.
    Asif, U.
    Tang, J.
    Harrer, S.
    2020 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM, 2020,