Diagnosing a disorder in a classification benchmark

被引:44
|
作者
McDermott, James [1 ]
Forsyth, Richard S. [1 ]
机构
[1] Univ Coll Dublin, Coll Business, Management Informat Syst, Dublin, Ireland
关键词
Machine learning; Classification; UCI; BUPA liver disorder; Benchmarks;
D O I
10.1016/j.patrec.2016.01.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A large majority of the many hundreds of papers which use the UCI BUPA Liver Disorders data set as a benchmark for classification misunderstand the data and use an unsuitable dependent variable. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 43
页数:3
相关论文
共 50 条
  • [21] Machine Learning Methods for Diagnosing Autism Spectrum Disorder and Attention- Deficit/Hyperactivity Disorder Using Functional and Structural MRI: A Survey
    Eslami, Taban
    Almuqhim, Fahad
    Raiker, Joseph S.
    Saeed, Fahad
    FRONTIERS IN NEUROINFORMATICS, 2021, 14
  • [22] The Development of a Practical Artificial Intelligence Tool for Diagnosing and Evaluating Autism Spectrum Disorder: Multicenter Study
    Chen, Tao
    Chen, Ye
    Yuan, Mengxue
    Gerstein, Mark
    Li, Tingyu
    Liang, Huiying
    Froehlich, Tanya
    Lu, Long
    JMIR MEDICAL INFORMATICS, 2020, 8 (05)
  • [23] Objective and automatic assessment approach for diagnosing attention-deficit/hyperactivity disorder based on skeleton detection and classification analysis in outpatient videos
    Ouyang, Chen-Sen
    Yang, Rei-Cheng
    Wu, Rong-Ching
    Chiang, Ching-Tai
    Chiu, Yi-Hung
    Lin, Lung-Chang
    CHILD AND ADOLESCENT PSYCHIATRY AND MENTAL HEALTH, 2024, 18 (01)
  • [24] Catastrophic Forgetting in Deep Graph Networks: A Graph Classification Benchmark
    Carta, Antonio
    Cossu, Andrea
    Errica, Federico
    Bacciu, Davide
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [25] Benchmark Analysis of Popular ImageNet Classification Deep CNN Architectures
    Muhammed, Mustafa Alghali Elsaid
    Ahmed, Ahmed Abdalazeem
    Khalid, Tarig Ahmed
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES FOR SMART NATION (SMARTTECHCON), 2017, : 902 - 907
  • [26] CurveML: a benchmark for evaluating and training learning-based methods of classification, recognition, and fitting of plane curves
    Raffo, Andrea
    Ranieri, Andrea
    Romanengo, Chiara
    Falcidieno, Bianca
    Biasotti, Silvia
    VISUAL COMPUTER, 2024, 40 (12) : 9017 - 9037
  • [27] PaperNet: A Dataset and Benchmark for Fine-Grained Paper Classification
    Yue, Tan
    Li, Yong
    Shi, Xuzhao
    Qin, Jiedong
    Fan, Zijiao
    Hu, Zonghai
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [28] MULTIMODAL REMOTE SENSING BENCHMARK DATASETS FOR LAND COVER CLASSIFICATION
    Yao, Jing
    Hong, Danfeng
    Gao, Lianru
    Chanussot, Jocelyn
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4807 - 4810
  • [29] The Role of Machine Learning in Diagnosing Bipolar Disorder: Scoping Review
    Jan, Zainab
    AI-Ansari, Noor
    Mousa, Osama
    Abd-alrazaq, Alaa
    Ahmed, Arfan
    Alam, Tanvir
    Househ, Mowafa
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (11)
  • [30] Network Diagnoses - Diagnosing Networks: Classification of Schizophrenia, Parkinson and Aging
    Plaschke, Rachel
    Cieslik, Edna
    Muller, Veronika
    Hoffstaedter, Felix
    Plachti, Anna
    Goosses, Mareike
    Latz, Anne
    Caspers, Svenja
    Jockwitz, Christiane
    Mobus, Susanne
    Gruber, Oliver
    Eickhoff, Claudia
    Reetz, Kathrin
    Heller, Julia
    Sudmeyer, Martin
    Mathys, Christian
    Caspers, Julian
    Grefkes, Christian
    Langner, Robert
    Eickhoff, Simon
    BIOLOGICAL PSYCHIATRY, 2017, 81 (10) : S410 - S410