Development of a highly active Fe-N-C catalyst with the preferential formation of atomic iron sites for oxygen reduction in alkaline and acidic electrolytes

被引:23
作者
Mehmood, Asad [1 ,2 ]
Ali, Basit [1 ]
Gong, Mengjun [2 ]
Kim, Min Gyu [3 ]
Kim, Ji-Young [4 ]
Bae, Jee-Hwan [4 ]
Kucernak, Anthony [2 ]
Kang, Yong-Mook [5 ]
Nam, Kyung-Wan [1 ]
机构
[1] Dongguk Univ, Dept Energy & Mat Engn, Seoul 04620, South Korea
[2] Imperial Coll London, Dept Chem, London SW7 2AZ, England
[3] Pohang Univ Sci & Technol, Pohang Accelerator Lab, Pohang 790784, South Korea
[4] Korea Inst Sci & Technol KIST, Adv Anal Ctr, Seoul 02792, South Korea
[5] Korea Univ, Dept Mat Sci & Engn, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Non-precious metal catalysts; Fe-N-C; Fuel cells; Oxygen reduction reaction; Site density; METAL ELECTROCATALYST; CARBON; PERFORMANCE; POLYANILINE; EFFICIENT; ELECTROREDUCTION; MELAMINE; DENSITY; FE/N/C; STABILITY;
D O I
10.1016/j.jcis.2021.03.081
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-doped porous carbons containing atomically dispersed iron are prime candidates for substituting platinum-based catalysts for oxygen reduction reaction (ORR) in fuel cells. These carbon catalysts are classically synthesized via complicated routes involving multiple heat-treatment steps to form the desired Fe-Nx sites. We herein developed a highly active Fe-N-C catalyst comprising of exclusive FeNx sites by a simplified solid-state synthesis protocol involving only a single heat-treatment. Imidazole is pyrolyzed in the presence of an inorganic salt-melt resulting in highly porous carbon sheets decorated with abundant Fe-Nx centers, which yielded a high density of electrochemically accessible active sites (1.36 x 1019 sites g-1) as determined by the in situ nitrite stripping technique. The optimized catalyst delivered a remarkable ORR activity with a half-wave potential (E1/2) of 0.905 VRHE in alkaline electrolyte surpassing the benchmark Pt catalyst by 55 mV. In acidic electrolyte, an E1/2 of 0.760 VRHE is achieved at a low loading level (0.29 mg cm-2). In PEMFC tests, a current density of 2.3 mA cm-2 is achieved at 0.90 ViR-free under H2-O2 conditions, reflecting high kinetic activity of the optimized catalyst. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:148 / 157
页数:10
相关论文
共 56 条
[1]   Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective [J].
Banham, Dustin ;
Ye, Siyu .
ACS ENERGY LETTERS, 2017, 2 (03) :629-638
[2]   Fe/N/C non-precious catalysts for PEM fuel cells: Influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction [J].
Charreteur, Fanny ;
Jaouen, Frederic ;
Ruggeri, Stephane ;
Dodelet, Jean-Pol .
ELECTROCHIMICA ACTA, 2008, 53 (06) :2925-2938
[3]   Novel highly active and selective Fe-N-C oxygen reduction electrocatalysts derived from in-situ polymerization pyrolysis [J].
Chen, Yechuan ;
Gokhale, Rohan ;
Serov, Alexey ;
Artyushkova, Kateryna ;
Atanassov, Plamen .
NANO ENERGY, 2017, 38 :201-209
[4]   Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction [J].
Chen, Yuanjun ;
Ji, Shufang ;
Wang, Yanggang ;
Dong, Juncai ;
Chen, Wenxing ;
Li, Zhi ;
Shen, Rongan ;
Zheng, Lirong ;
Zhuang, Zhongbin ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (24) :6937-6941
[5]  
Chen Z, 2020, J COLLOID INTERF SCI
[6]   A specific demetalation of Fe-N4 catalytic sites in the micropores of NC_Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells [J].
Chenitz, Regis ;
Kramm, Ulrike I. ;
Lefevre, Michel ;
Glibin, Vassili ;
Zhang, Gaixia ;
Sun, Shuhui ;
Dodelet, Jean-Pol .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (02) :365-382
[7]   Minimizing Operando Demetallation of Fe-N-C Electrocatalysts in Acidic Medium [J].
Choi, Chang Hyuck ;
Baldizzone, Claudio ;
Polymeros, George ;
Pizzutilo, Enrico ;
Kasian, Olga ;
Schuppert, Anna K. ;
Sahraie, Nastaran Ranjbar ;
Sougrati, Moulay-Tahar ;
Mayrhofer, Karl J. J. ;
Jaouen, Frederic .
ACS CATALYSIS, 2016, 6 (05) :3136-3146
[8]   Stability of Fe-N-C Catalysts in Acidic Medium Studied by Operando Spectroscopy [J].
Choi, Chang Hyuck ;
Baldizzone, Claudio ;
Grote, Jan-Philipp ;
Schuppert, Anna K. ;
Jaouen, Frederic ;
Mayrhofer, Karl J. J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (43) :12753-12757
[9]   Multitechnique Characterization of a Polyaniline-Iron-Carbon Oxygen Reduction Catalyst [J].
Ferrandon, Magali ;
Kropf, A. Jeremy ;
Myers, Deborah J. ;
Artyushkova, Kateryna ;
Kramm, Ulrike ;
Bogdanoff, Peter ;
Wu, Gang ;
Johnston, Christina M. ;
Zelenay, Piotr .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (30) :16001-16013
[10]   Fe-N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions [J].
Ferrero, Guillermo A. ;
Preuss, Kathrin ;
Marinovic, Adam ;
Jorge, Ana Belen ;
Mansor, Noramalina ;
Brett, Dan J. L. ;
Fuertes, Antonio B. ;
Sevilla, Marta ;
Titirici, Maria-Magdalena .
ACS NANO, 2016, 10 (06) :5922-5932