Growth of filaments and saturation of the filamentation instability

被引:15
作者
Gedalin, M. [1 ]
Medvedev, M. [2 ,3 ,9 ]
Spitkovsky, A. [4 ]
Krasnoselskikh, V. [5 ]
Balikhin, M. [6 ]
Vaivads, A. [7 ]
Perri, S. [8 ]
机构
[1] Ben Gurion Univ Negev, IL-84105 Beer Sheva, Israel
[2] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
[3] Univ Copenhagen, Niels Bohr Inst, Niels Bohr Int Acad, DK-2100 Copenhagen K, Denmark
[4] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[5] CNRS, LPCE, F-45071 Orleans, France
[6] Univ Sheffield, Sheffield S1 3JD, S Yorkshire, England
[7] Swedish Inst Space Phys, S-75121 Uppsala, Sweden
[8] ISSI, CH-3012 Bern, Switzerland
[9] RRC Kurchatov Inst, Moscow 123182, Russia
基金
美国国家科学基金会;
关键词
MAGNETIC-FIELD GENERATION; WEIBEL INSTABILITY; RELATIVISTIC PLASMAS; COLLISIONLESS SHOCKS; EVOLUTION; OBLIQUE; BEAM;
D O I
10.1063/1.3345824
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The filamentation instability of counterstreaming beams is a nonresonant hydrodynamic-type instability whose growth rate is a smooth function of the wavelength (scale). As a result, perturbations with all unstable wavelengths develop, and the growth saturates due to the saturation of available current. For a given scale, the magnetic field at saturation is proportional to the scale. As a result, the instability develops in a nearly linear regime, where the unstable modes stop growing as soon as the saturation of the corresponding wavelength is reached. At each moment there exists a dominant scale of the magnetic field which is the scale that reached saturation at this particular time. The smaller scales do not disappear and can be easily distinguished in the current structure. The overall growth of the instability stops when the loss of the streaming ion energy because of deceleration is comparable to the initial ion energy. (C) 2010 American Institute of Physics. [doi:10.1063/1.3345824]
引用
收藏
页数:6
相关论文
共 22 条
[1]   The Weibel instability in relativistic plasmas - II. Nonlinear theory and stabilization mechanism [J].
Achterberg, A. ;
Wiersma, J. ;
Norman, C. A. .
ASTRONOMY & ASTROPHYSICS, 2007, 475 (01) :19-36
[2]   The Weibel instability in relativistic plasmas - I. Linear theory [J].
Achterberg, A. ;
Wiersma, J. .
ASTRONOMY & ASTROPHYSICS, 2007, 475 (01) :1-18
[3]   Exact relativistic kinetic theory of an electron-beam-plasma system:: Hierarchy of the competing modes in the system-parameter space [J].
Bret, A. ;
Gremillet, L. ;
Benisti, D. ;
Lefebvre, E. .
PHYSICAL REVIEW LETTERS, 2008, 100 (20)
[4]   How really transverse is the filamentation instability? [J].
Bret, A. ;
Gremillet, L. ;
Bellido, J. C. .
PHYSICS OF PLASMAS, 2007, 14 (03)
[5]   Oblique electromagnetic instabilities for an ultra relativistic electron beam passing through a plasma [J].
Bret, A .
EUROPHYSICS LETTERS, 2006, 74 (06) :1027-1031
[6]   WEIBEL, TWO-STREAM, FILAMENTATION, OBLIQUE, BELL, BUNEMAN ... WHICH ONE GROWS FASTER? [J].
Bret, A. .
ASTROPHYSICAL JOURNAL, 2009, 699 (02) :990-1003
[7]   Evolution of the fastest-growing relativistic mixed mode instability driven by a tenuous plasma beam in one and two dimensions [J].
Dieckmann, M. E. ;
Frederiksen, J. T. ;
Bret, A. ;
Shukla, P. K. .
PHYSICS OF PLASMAS, 2006, 13 (11)
[8]   Three-dimensional Weibel instability in astrophysical scenarios [J].
Fonseca, RA ;
Silva, LO ;
Tonge, JW ;
Mori, WB ;
Dawson, JM .
PHYSICS OF PLASMAS, 2003, 10 (05) :1979-1984
[9]   Magnetic field generation in collisionless shocks:: Pattern growth and transport [J].
Frederiksen, JT ;
Hededal, CB ;
Haugbolle, T ;
Nordlund, Å .
ASTROPHYSICAL JOURNAL, 2004, 608 (01) :L13-L16
[10]   Are gamma-ray burst shocks mediated by the Weibel instability? [J].
Lyubarsky, Yuri ;
Eichler, David .
ASTROPHYSICAL JOURNAL, 2006, 647 (02) :1250-1254