Meromorphic parametric non-integrability; the inverse square potential

被引:12
作者
Tosel, EJ [1 ]
机构
[1] Inst Mech Celeste, F-75014 Paris, France
关键词
D O I
10.1007/PL00004233
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We let H(X, Y, alpha) be a Hamiltonian depending meromorphically on positions X, inertial momenta Y and parameters ct. In Theorem 1 we give conditions for the "meromorphic parametric" non-integrability of H. Theorem 2 proves the meromorphic non-integrability of the 4-body problem on a line with given masses (1, m, m, 1) with m not equal 1, and of the 3-body problem in P-p with p greater than or equal to 2 and given masses (1, 1, m), for the inverse square potential. Those are the simplest cases left open after the integrability results of Jacobi (3 bodies on a line with arbitrary masses) and Calogero-Moser (n bodies on a line with equal masses). Taking the masses as parameters and using both Theorems 1 and 2, we prove Theorem 3, which shows meromorphic parametric non-integrability results for the inverse square potential.
引用
收藏
页码:187 / 205
页数:19
相关论文
共 17 条
[1]  
Albouy A, 1998, INVENT MATH, V131, P151
[2]  
[Anonymous], 1960, INTRO THEORY LINEAR
[3]  
[Anonymous], 1999, PROGR MATH
[4]  
[Anonymous], 1969, GESAMMELTE WERKE
[5]  
BAIDER A, 1996, INFINITESIMAL GEOMET
[6]  
BANACHIEWITZ T, 1906, PARTICULIER PROBLEME
[7]  
Bruns H., 1887, ACTA MATH, V11
[8]  
KAPLANSKY I, 1975, INTRO DIFFERENTIAL A
[9]  
Meyer K. R., 1992, INTRO HAMILTONIAN DY
[10]  
MORALESRUIZ JJ, 1998, NOTE NONINTEGRABILIT