Two-Dimensional Phonon Polariton Heat Transport

被引:54
作者
Tranchant, Laurent [1 ]
Harnamura, Satoki [1 ]
Ordonez-Miranda, Jose [2 ]
Yabuki, Tomohide [1 ]
Vega-Flick, Alejandro [3 ]
Cervantes-Alvarez, Fernando [3 ]
Jose Alvarado-Gil, Juan [2 ,3 ]
Volz, Sebastian [4 ,5 ]
Miyazaki, Koji [1 ]
机构
[1] Kyushu Inst Technol, Dept Mech & Control Engn, Tobata Ku, 1-1 Sensui Cho, Kitakyushu, Fukuoka 8048550, Japan
[2] Univ Poitiers, CNRS, Inst Pprime, ISAE ENSMA, F-86962 Futuroscope, Chasseneuil, France
[3] CINVESTAV Unidad Merida, Appl Phys Dept, Carretera Antigua Progreso Km 6, Merida 97310, Yucatan, Mexico
[4] Univ Tokyo, Inst Ind Sci, LIMMS CNRS IIS UMI2820, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
[5] Univ Paris Saclay, Lab Energet Mol & Macroscop, Cent Supelec, Combust,UPR CNRS 288, Bat Eiffel,3,Rue Joliot Curie, F-91192 Gif Sur Yvette, France
关键词
In-plane thermal conductivity; surface electromagnetic waves; silica thin film; 3 omega method; transient grating technique; THERMAL-CONDUCTIVITY;
D O I
10.1021/acs.nanolett.9b02214
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As is well-known, the phonon and electron thermal conductivity of a thin film generally decreases as its thickness scales down to nanoscales due to size effects, which have dramatic engineering effects, such as overheating, low reliability, and reduced lifetime of processors and other electronic components. However, given that thinner films have higher surface-to-volume ratios, the predominant surface effects in these nanomaterials enable the transport of thermal energy not only inside their volumes but also along their interfaces. In polar nanofilms, this interfacial transport is driven by surface phonon polaritons, which are electromagnetic waves generated at mid-infrared frequencies mainly by the phonon-photon coupling along their surfaces. Theory predicts that these polaritons can enhance the in-plane thermal conductivity of suspended silica films to values higher than the corresponding bulk one, as their thicknesses decrease through values smaller than 200 nm. In this work, we experimentally demonstrate this thermal conductivity enhancement. The results show that the in-plane thermal conductivity of a 20 nm thick silica film at room temperature is nearly twice its lattice vibration counterpart. Additional thermal diffusivity measurements reveal that the diffusivity of a silica film also increases as its thickness decreases, such that the ratio of thermal conductivity/thermal diffusivity (volumetric heat capacity) remains nearly independent of the film thickness. The experimental results obtained here will enable one to build on recent interesting theoretical predictions, highlight the existence of a new heat channel at the nanoscale, and provide a new avenue to engineer thermally conductive nanomaterials for efficient thermal management.
引用
收藏
页码:6924 / 6930
页数:7
相关论文
共 34 条
[21]   Effects of anisotropy and size of polar nano thin films on their thermal conductivity due to surface phonon-polaritons [J].
Ordonez-Miranda, Jose ;
Tranchant, Laurent ;
Kim, Beomjoon ;
Chalopin, Yann ;
Antoni, Thomas ;
Volz, Sebastian .
APPLIED PHYSICS EXPRESS, 2014, 7 (03)
[22]   Quantized Thermal Conductance of Nanowires at Room Temperature Due to Zenneck Surface-Phonon Polaritons [J].
Ordonez-Miranda, Jose ;
Tranchant, Laurent ;
Kim, Beomjoon ;
Chalopin, Yann ;
Antoni, Thomas ;
Volz, Sebastian .
PHYSICAL REVIEW LETTERS, 2014, 112 (05)
[23]  
Palik E. D., 1985, CRC HDB OPTICAL CONS
[24]   Origin of the high-frequency doublet in the vibrational spectrum of vitreous SiO2 [J].
Sarnthein, J ;
Pasquarello, A ;
Car, R .
SCIENCE, 1997, 275 (5308) :1925-1927
[25]   Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3ω-Volklein method [J].
Sikora, A. ;
Ftouni, H. ;
Richard, J. ;
Hebert, C. ;
Eon, D. ;
Omnes, F. ;
Bourgeois, O. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (05)
[26]   Highly Confined and Switchable Mid-Infrared Surface Phonon Polariton Resonances of Planar Circular Cavities with a Phase Change Material [J].
Sumikura, Hisashi ;
Wang, Tao ;
Li, Peining ;
Michel, Ann-Katrin U. ;
Hessler, Andreas ;
Jung, Lena ;
Lewin, Martin ;
Wuttig, Matthias ;
Chigrin, Dmitry N. ;
Taubner, Thomas .
NANO LETTERS, 2019, 19 (04) :2549-2554
[27]   High thermal conductivity in polaritonic SiO2 nanoparticle beds [J].
Tervo, E. J. ;
Adewuyi, O. S. ;
Hammonds, J. S., Jr. ;
Cola, B. A. .
MATERIALS HORIZONS, 2016, 3 (05) :434-441
[28]   Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling [J].
Tielrooij, Klaas-Jan ;
Hesp, Niels C. H. ;
Principi, Alessandro ;
Lundeberg, Mark B. ;
Pogna, Eva A. A. ;
Banszerus, Luca ;
Mics, Zoltan ;
Massicotte, Mathieu ;
Schmidt, Peter ;
Davydovskaya, Diana ;
Purdie, David G. ;
Goykhman, Ilya ;
Soavi, Giancarlo ;
Lombardo, Antonio ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Bonn, Mischa ;
Turchinovich, Dmitry ;
Stampfer, Christoph ;
Ferrari, Andrea C. ;
Cerullo, Giulio ;
Polini, Marco ;
Koppens, Frank H. L. .
NATURE NANOTECHNOLOGY, 2018, 13 (01) :41-+
[29]   Thermal transport in suspended silicon membranes measured by laser-induced transient gratings [J].
Vega-Flick, A. ;
Duncan, R. A. ;
Eliason, J. K. ;
Cuffe, J. ;
Johnson, J. A. ;
Peraud, J. -P. M. ;
Zeng, L. ;
Lu, Z. ;
Maznev, A. A. ;
Wang, E. N. ;
Alvarado-Gil, J. J. ;
Sledzinska, M. ;
Sotomayor Torres, C. M. ;
Chen, G. ;
Nelson, K. A. .
AIP ADVANCES, 2016, 6 (12)
[30]   Mid-infrared Polaritonic Coupling between Boron Nitride Nanotubes and Graphene [J].
Xu, Xiaoji G. ;
Jiang, Jian-Hua ;
Gilburd, Leonid ;
Rensing, Rachel G. ;
Burch, Kenneth S. ;
Zhi, Chunyi ;
Bando, Yoshio ;
Golberg, Dmitri ;
Walker, Gilbert C. .
ACS NANO, 2014, 8 (11) :11305-11312