Polymer-Supported Liquid Layer Electrolyzer Enabled Electrochemical CO2 Reduction to CO with High Energy Efficiency

被引:10
作者
Li, Shangyu [1 ,2 ]
Ma, Yiwen [1 ,2 ]
Zhao, Tiancheng [1 ,2 ]
Li, Jiaxin [1 ,2 ]
Kang, Xinyue [1 ,2 ]
Guo, Wen [1 ,2 ]
Wen, Yunzhou [1 ,2 ]
Wang, Liping [1 ,2 ]
Wang, Yurui [3 ]
Lin, Renxing [3 ]
Li, Tiantian [3 ]
Tan, Hairen [3 ]
Peng, Huisheng [1 ,2 ]
Zhang, Bo [1 ,2 ]
机构
[1] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200438, Peoples R China
[2] Fudan Univ, Lab Adv Mat, Shanghai 200438, Peoples R China
[3] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; conversion; electrochemical reduction; electrolyzers; polymer-supported liquid layers; low cell voltage; CARBON-DIOXIDE; PH MEASUREMENT; ELECTROREDUCTION; CONVERSION; CATALYST;
D O I
10.1002/open.202100084
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical conversion of carbon dioxide (CO2) to carbon monoxide (CO) is a favorable approach to reduce CO2 emission while converting excess sustainable energy to important chemical feedstocks. At high current density (>100 mA cm(-2)), low energy efficiency (EE) and unaffordable cell cost limit the industrial application of conventional CO2 electrolyzers. Thus, a crucial and urgent task is to design a new type of CO2 electrolyzer that can work efficiently at high current density. Here we report a polymer-supported liquid layer (PSL) electrolyzer using polypropylene non-woven fabric as a separator between anode and cathode. Ag based cathode was fed with humid CO2 and potassium hydroxide was fed to earth-abundant NiFe-based anode. In this configuration, the PSL provided high-pH condition for the cathode reaction and reduced the cell resistance, achieving a high full cell EE over 66 % at 100 mA cm(-2).
引用
收藏
页码:639 / 644
页数:6
相关论文
共 35 条
  • [11] High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell
    Endrodi, B.
    Kecsenovity, E.
    Samu, A.
    Halmagyi, T.
    Rojas-Carbonell, S.
    Wang, L.
    Yan, Y.
    Janaky, C.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) : 4098 - 4105
  • [12] Ultrathinning Nickel Sulfide with Modulated Electron Density for Efficient Water Splitting
    Fei, Ben
    Chen, Ziliang
    Liu, Jiexian
    Xu, Hongbin
    Yan, Xiaoxiao
    Qing, Huilin
    Chen, Mao
    Wu, Renbing
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (41)
  • [13] Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO
    Gabardo, Christine M.
    Seifitokaldani, Ali
    Edwards, Jonathan P.
    Cao-Thang Dinh
    Burdyny, Thomas
    Kibria, Md Golam
    O'Brien, Colin P.
    Sargent, Edward H.
    Sinton, David
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (09) : 2531 - 2539
  • [14] Integrating Nickel-Nitrogen Doped Carbon Catalyzed CO2 Electroreduction with Chlor-Alkali Process for CO, Cl2 and KHCO3 Production with Enhanced Techno-Economics
    Guo, Jin-Han
    Sun, Wei-Yin
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 275
  • [15] Hashimoto K, 2019, SPRINGERBRIEF ENERG, P5, DOI 10.1007/978-981-13-8584-1_3
  • [16] The p-Orbital Delocalization of Main-Group Metals to Boost CO2 Electroreduction
    He, Sisi
    Ni, Fenglou
    Ji, Yujin
    Wang, Lie
    Wen, Yunzhou
    Bai, Haipeng
    Liu, Gejun
    Zhang, Ye
    Li, Youyong
    Zhang, Bo
    Peng, Huisheng
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (49) : 16114 - 16119
  • [17] Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide
    Hori, Y
    Ito, H
    Okano, K
    Nagasu, K
    Sato, S
    [J]. ELECTROCHIMICA ACTA, 2003, 48 (18) : 2651 - 2657
  • [18] A Universal Graphene Quantum Dot Tethering Design Strategy to Synthesize Single-Atom Catalysts
    Jin, Song
    Ni, Youxuan
    Hao, Zhimeng
    Zhang, Kai
    Lu, Yong
    Yan, Zhenhua
    Wei, Yajuan
    Lu, Ying-Rui
    Chan, Ting-Shan
    Chen, Jun
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (49) : 21885 - 21889
  • [19] General Techno-Economic Analysis of CO2 Electrolysis Systems
    Jouny, Matthew
    Luc, Wesley
    Jiao, Feng
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (06) : 2165 - 2177
  • [20] Electrochemical CO2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design
    Kibria, Md Golam
    Edwards, Jonathan P.
    Gabardo, Christine M.
    Cao-Thang Dinh
    Seifitokaldani, Ali
    Sinton, David
    Sargent, Edward H.
    [J]. ADVANCED MATERIALS, 2019, 31 (31)