Polymer-Supported Liquid Layer Electrolyzer Enabled Electrochemical CO2 Reduction to CO with High Energy Efficiency

被引:10
作者
Li, Shangyu [1 ,2 ]
Ma, Yiwen [1 ,2 ]
Zhao, Tiancheng [1 ,2 ]
Li, Jiaxin [1 ,2 ]
Kang, Xinyue [1 ,2 ]
Guo, Wen [1 ,2 ]
Wen, Yunzhou [1 ,2 ]
Wang, Liping [1 ,2 ]
Wang, Yurui [3 ]
Lin, Renxing [3 ]
Li, Tiantian [3 ]
Tan, Hairen [3 ]
Peng, Huisheng [1 ,2 ]
Zhang, Bo [1 ,2 ]
机构
[1] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200438, Peoples R China
[2] Fudan Univ, Lab Adv Mat, Shanghai 200438, Peoples R China
[3] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; conversion; electrochemical reduction; electrolyzers; polymer-supported liquid layers; low cell voltage; CARBON-DIOXIDE; PH MEASUREMENT; ELECTROREDUCTION; CONVERSION; CATALYST;
D O I
10.1002/open.202100084
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical conversion of carbon dioxide (CO2) to carbon monoxide (CO) is a favorable approach to reduce CO2 emission while converting excess sustainable energy to important chemical feedstocks. At high current density (>100 mA cm(-2)), low energy efficiency (EE) and unaffordable cell cost limit the industrial application of conventional CO2 electrolyzers. Thus, a crucial and urgent task is to design a new type of CO2 electrolyzer that can work efficiently at high current density. Here we report a polymer-supported liquid layer (PSL) electrolyzer using polypropylene non-woven fabric as a separator between anode and cathode. Ag based cathode was fed with humid CO2 and potassium hydroxide was fed to earth-abundant NiFe-based anode. In this configuration, the PSL provided high-pH condition for the cathode reaction and reduced the cell resistance, achieving a high full cell EE over 66 % at 100 mA cm(-2).
引用
收藏
页码:639 / 644
页数:6
相关论文
共 35 条
  • [1] [Anonymous], 2018, ANGEW CHEM-GER EDIT, V130, P9619
  • [2] [Anonymous], 2020, ANGEW CHEM, V132, P22069
  • [3] [Anonymous], 2017, ANGEW CHEM-GER EDIT, V129, P15813
  • [4] [Anonymous], 2018, ANGEW CHEM-GER EDIT, V130, P16346
  • [5] [Anonymous], 2019, ANGEW CHEM-GER EDIT, V131, P17210
  • [6] Controllable CO adsorption determines ethylene and methane productions from CO2 electroreduction
    Bai, Haipeng
    Cheng, Tao
    Li, Shangyu
    Zhou, Zhenyu
    Yang, Hao
    Li, Jun
    Xie, Miao
    Ye, Jinyu
    Ji, Yujin
    Li, Youyong
    Zhou, Zhiyou
    Sun, Shigang
    Zhang, Bo
    Peng, Huisheng
    [J]. SCIENCE BULLETIN, 2021, 66 (01) : 62 - 68
  • [7] System Design Rules for Intensifying the Electrochemical Reduction of CO2 to CO on Ag Nanoparticles
    Bhargava, Saket S.
    Proietto, Federica
    Azmoodeh, Daniel
    Cofell, Emiliana R.
    Henckel, Danielle A.
    Verma, Sumit
    Brooks, Christopher J.
    Gewirth, Andrew A.
    Kenis, Paul J. A.
    [J]. CHEMELECTROCHEM, 2020, 7 (09) : 2001 - 2011
  • [8] Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels
    Birdja, Yuvraj Y.
    Perez-Gallent, Elena
    Figueiredo, Marta C.
    Gottle, Adrien J.
    Calle-Vallejo, Federico
    Koper, Marc T. M.
    [J]. NATURE ENERGY, 2019, 4 (09) : 732 - 745
  • [9] What would it take for renewably powered electrosynthesis to displace petrochemical processes?
    De Luna, Phil
    Hahn, Christopher
    Higgins, Drew
    Jaffer, Shaffiq A.
    Jaramillo, Thomas F.
    Sargent, Edward H.
    [J]. SCIENCE, 2019, 364 (6438) : 350 - +
  • [10] Operation of a Pressurized System for Continuous Reduction of CO2
    Dufek, Eric J.
    Lister, Tedd E.
    Stone, Simon G.
    McIlwain, Michael E.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (09) : F514 - F517