Characterizations of a limiting class B∞ of Bekolle-Bonami weights

被引:15
作者
Aleman, Alexandru [1 ]
Pott, Sandra [2 ]
Reguera, Maria Carmen [1 ,3 ]
机构
[1] Lund Univ, Ctr Math Sci, S-22100 Lund, Sweden
[2] Lund Univ, Ctr Math Sci, S-2100 Lund, Sweden
[3] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
基金
瑞典研究理事会;
关键词
Bekolle weights; reverse Holder property; integral operator; INTEGRATION OPERATORS; NORM INEQUALITIES; SPECTRA;
D O I
10.4171/RMI/1097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explore properties of the class of Bekolle-Bonami weights B-infinity introduced by the authors in a previous work. Although Bekolle- Bonami weights are known to be ill-behaved because they do not satisfy a reverse Holder property, we prove that when restricting to a class of weights that are "nearly constant on top halves", one recovers some of the classical properties of Muckenhoupt weights. We also provide an application of this result to the study of the spectra of certain integral operators.
引用
收藏
页码:1677 / 1692
页数:16
相关论文
共 17 条
[1]   Sarason Conjecture on the Bergman Space [J].
Aleman, Alexandru ;
Pott, Sandra ;
Reguera, Maria Carmen .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (14) :4320-4349
[2]  
Aleman A, 2012, INDIANA U MATH J, V61, P775
[3]   SPECTRA OF INTEGRATION OPERATORS ON WEIGHTED BERGMAN SPACES [J].
Aleman, Alexandru ;
Constantin, Olivia .
JOURNAL D ANALYSE MATHEMATIQUE, 2009, 109 :199-231
[4]  
BEKOLLE D, 1978, CR ACAD SCI A MATH, V286, P775
[5]   WEIGHTED INEQUALITIES FOR THE BERGMAN PROJECTION IN THE UNIT-SPHERE CN [J].
BEKOLLE, D .
STUDIA MATHEMATICA, 1982, 71 (03) :305-323
[6]   On the Bekolle-Bonami condition [J].
Borichev, A .
MATHEMATISCHE ANNALEN, 2004, 328 (03) :389-398
[7]   Discretizations of integral operators and atomic decompositions in vector-valued weighted Bergman spaces [J].
Constantin, Olivia .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 59 (04) :523-554
[8]  
Duoandikoetxea J, 2016, MATH Z, V282, P955, DOI 10.1007/s00209-015-1572-y
[9]  
FUJII NOBUHIKO, 1977, MATH JPN, V22, P529
[10]  
Hedenmalm H., 2000, Theory of Bergman spaces. Graduate Texts in Mathematics, V199