Viscous Effects in the Solid Earth Response to Modern Antarctic Ice Mass Flux: Implications for Geodetic Studies of WAIS Stability in a Warming World

被引:27
作者
Powell, E. [1 ]
Gomez, N. [2 ]
Hay, C. [3 ]
Latychev, K. [1 ,3 ,4 ]
Mitrovica, J. X. [1 ]
机构
[1] Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA
[2] McGill Univ, Dept Earth & Planetary Sci, Montreal, PQ, Canada
[3] Boston Coll, Dept Earth & Environm Sci, Chestnut Hill, MA 02167 USA
[4] Columbia Univ, Dept Earth & Environm Sci, New York, NY USA
基金
美国国家科学基金会;
关键词
Antarctica; Ice sheets; Ice loss; growth; Global positioning systems (GPS); SEA-LEVEL CHANGE; GLACIAL ISOSTATIC-ADJUSTMENT; UPPER-MANTLE STRUCTURE; RAPID BEDROCK UPLIFT; BENEATH ANTARCTICA; WEST ANTARCTICA; JOINT INVERSION; VELOCITY MODEL; VISCOSITY; SHEET;
D O I
10.1175/JCLI-D-19-0479.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The West Antarctic Ice Sheet (WAIS) overlies a thin, variable-thickness lithosphere and a shallow upper-mantle region of laterally varying and, in some regions, very low (similar to 10(18) Pa s) viscosity. We explore the extent to which viscous effects may affect predictions of present-day geoid and crustal deformation rates resulting from Antarctic ice mass flux over the last quarter century and project these calculations into the next half century, using viscoelastic Earth models of varying complexity. Peak deformation rates at the end of a 25-yr simulation predicted with an elastic model underestimate analogous predictions that are based on a 3D viscoelastic Earth model (with minimum viscosity below West Antarctica of 10(18) Pa s) by similar to 15 and similar to 3 mm yr(-1) in the vertical and horizontal directions, respectively, at sites overlying low-viscosity mantle and close to high rates of ice mass flux. The discrepancy in uplift rate can be reduced by adopting 1D Earth models tuned to the regional average viscosity profile beneath West Antarctica. In the case of horizontal crustal rates, adopting 1D regional viscosity models is no more accurate in recovering predictions that are based on 3D viscosity models than calculations that assume a purely elastic Earth. The magnitude and relative contribution of viscous relaxation to crustal deformation rates will likely increase significantly in the next several decades, and the adoption of 3D viscoelastic Earth models in analyses of geodetic datasets [e.g., Global Navigation Satellite System (GNSS); Gravity Recovery and Climate Experiment (GRACE)] will be required to accurately estimate the magnitude of Antarctic modern ice mass flux in the progressively warming world.
引用
收藏
页码:443 / 459
页数:17
相关论文
共 53 条
[1]  
An MJ, 2015, J GEOPHYS RES-SOL EA, V120, P359, DOI [10.1002/2014JB011332, 10.1002/2015JB011917]
[2]   The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories [J].
Argus, Donald F. ;
Peltier, W. R. ;
Drummond, R. ;
Moore, Angelyn W. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2014, 198 (01) :537-563
[3]   Iceland rising: Solid Earth response to ice retreat inferred from satellite radar interferometry and visocelastic modeling [J].
Auriac, A. ;
Spaans, K. H. ;
Sigmundsson, F. ;
Hooper, A. ;
Schmidt, P. ;
Lund, B. .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2013, 118 (04) :1331-1344
[4]   Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability [J].
Barletta, Valentina R. ;
Bevis, Michael ;
Smith, Benjamin E. ;
Wilson, Terry ;
Brown, Abel ;
Bordoni, Andrea ;
Willis, Michael ;
Khan, Shfaqat Abbas ;
Rovira-Navarro, Marc ;
Dalziel, Ian ;
Smalley, Robert, Jr. ;
Kendrick, Eric ;
Konfal, Stephanie ;
Caccamise, Dana J., II ;
Aster, Richard C. ;
Nyblade, Andy ;
Wiens, Douglas A. .
SCIENCE, 2018, 360 (6395) :1335-+
[5]   Ice streams as the arteries of an ice sheet: their mechanics, stability and significance [J].
Bennett, MR .
EARTH-SCIENCE REVIEWS, 2003, 61 (3-4) :309-339
[6]   Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance [J].
Bevis, Michael ;
Kendrick, Eric ;
Smalley, Robert, Jr. ;
Dalziel, Ian ;
Caccamise, Dana ;
Sasgen, Ingo ;
Helsen, Michiel ;
Taylor, F. W. ;
Zhou, Hao ;
Brown, Abel ;
Raleigh, David ;
Willis, Michael ;
Wilson, Terry ;
Konfal, Stephanie .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2009, 10
[7]   Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change [J].
Bulthuis, Kevin ;
Arnst, Maarten ;
Sun, Sainan ;
Pattyn, Frank .
CRYOSPHERE, 2019, 13 (04) :1349-1380
[8]   GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science [J].
Caron, L. ;
Ivins, E. R. ;
Larour, E. ;
Adhikari, S. ;
Nilsson, J. ;
Blewitt, G. .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (05) :2203-2212
[9]   Axial-type olivine crystallographic preferred orientations: The effect of strain geometry on mantle texture [J].
Chatzaras, Vasileios ;
Kruckenberg, Seth C. ;
Cohen, Shaina M. ;
Medaris, L. Gordon, Jr. ;
Withers, Anthony C. ;
Bagley, Brian .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2016, 121 (07) :4895-4922
[10]   Accelerated Antarctic ice loss from satellite gravity measurements [J].
Chen, J. L. ;
Wilson, C. R. ;
Blankenship, D. ;
Tapley, B. D. .
NATURE GEOSCIENCE, 2009, 2 (12) :859-862