An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data

被引:16
|
作者
Sun, Xifang [1 ]
Sun, Shiquan [2 ,3 ]
Yang, Sheng [4 ]
机构
[1] Xian Shiyou Univ, Sch Sci, Dept Math, Xian 710065, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[3] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[4] Nanjing Med Univ, Sch Publ Hlth, Dept Biostat, Nanjing 211166, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
cell-type compositions; deconvolution; single-cell RNA-seq; nonnegative matrix factorization; gene expression; HETEROGENEITY; ORIGIN;
D O I
10.3390/cells8101161
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Estimating cell type compositions for complex diseases is an important step to investigate the cellular heterogeneity for understanding disease etiology and potentially facilitate early disease diagnosis and prevention. Here, we developed a computationally statistical method, referring to Multi-Omics Matrix Factorization (MOMF), to estimate the cell-type compositions of bulk RNA sequencing (RNA-seq) data by leveraging cell type-specific gene expression levels from single-cell RNA sequencing (scRNA-seq) data. MOMF not only directly models the count nature of gene expression data, but also effectively accounts for the uncertainty of cell type-specific mean gene expression levels. We demonstrate the benefits of MOMF through three real data applications, i.e., Glioblastomas (GBM), colorectal cancer (CRC) and type II diabetes (T2D) studies. MOMF is able to accurately estimate disease-related cell type proportions, i.e., oligodendrocyte progenitor cells and macrophage cells, which are strongly associated with the survival of GBM and CRC, respectively.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Combined single-cell RNA-seq and bulk RNA-seq to analyze the expression and role of TREM2 in bladder cancer
    Zhang, Xingxing
    Du, Yuelin
    Xiong, Wei
    Shang, Panfeng
    MEDICAL ONCOLOGY, 2022, 40 (01)
  • [42] Recent Developments in Single-Cell RNA-Seq of Microorganisms
    Zhang, Yi
    Gao, Jiaxin
    Huang, Yanyi
    Wang, Jianbin
    BIOPHYSICAL JOURNAL, 2018, 115 (02) : 173 - 180
  • [43] A posterior probability based Bayesian method for single-cell RNA-seq data imputation
    Chen, Siqi
    Zheng, Ruiqing
    Tian, Luyi
    Wu, Fang-Xiang
    Li, Min
    METHODS, 2023, 216 : 21 - 38
  • [44] EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data
    Teschendorff, Andrew E.
    Zhu, Tianyu
    Breeze, Charles E.
    Beck, Stephan
    GENOME BIOLOGY, 2020, 21 (01) : 1
  • [45] De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution
    Liao, Jie
    Qian, Jingyang
    Fang, Yin
    Chen, Zhuo
    Zhuang, Xiang
    Zhang, Ningyu
    Shao, Xin
    Hu, Yining
    Yang, Penghui
    Cheng, Junyun
    Hu, Yang
    Yu, Lingqi
    Yang, Haihong
    Zhang, Jinlu
    Lu, Xiaoyan
    Shao, Li
    Wu, Dan
    Gao, Yue
    Chen, Huajun
    Fan, Xiaohui
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [46] An interpretable framework for clustering single-cell RNA-Seq datasets
    Zhang, Jesse M.
    Fan, Jue
    Fan, Christina
    Rosenfeld, David
    Tse, David N.
    BMC BIOINFORMATICS, 2018, 19
  • [47] Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization
    Zhu, Xun
    Ching, Travers
    Pan, Xinghua
    Weissman, Sherman M.
    Garmire, Lana
    PEERJ, 2017, 5
  • [48] Dimensionality reduction and visualization of single-cell RNA-seq data with an improved deep variational autoencoder
    Jiang, Jing
    Xu, Junlin
    Liu, Yuansheng
    Song, Bosheng
    Guo, Xiulan
    Zeng, Xiangxiang
    Zou, Quan
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)
  • [49] An integrative method to normalize RNA-Seq data
    Cyril Filloux
    Meersseman Cédric
    Philippe Romain
    Forestier Lionel
    Klopp Christophe
    Rocha Dominique
    Maftah Abderrahman
    Petit Daniel
    BMC Bioinformatics, 15
  • [50] An integrative method to normalize RNA-Seq data
    Filloux, Cyril
    Cedric, Meersseman
    Romain, Philippe
    Lionel, Forestier
    Christophe, Klopp
    Dominique, Rocha
    Abderrahman, Maftah
    Daniel, Petit
    BMC BIOINFORMATICS, 2014, 15