An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data

被引:16
|
作者
Sun, Xifang [1 ]
Sun, Shiquan [2 ,3 ]
Yang, Sheng [4 ]
机构
[1] Xian Shiyou Univ, Sch Sci, Dept Math, Xian 710065, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[3] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[4] Nanjing Med Univ, Sch Publ Hlth, Dept Biostat, Nanjing 211166, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
cell-type compositions; deconvolution; single-cell RNA-seq; nonnegative matrix factorization; gene expression; HETEROGENEITY; ORIGIN;
D O I
10.3390/cells8101161
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Estimating cell type compositions for complex diseases is an important step to investigate the cellular heterogeneity for understanding disease etiology and potentially facilitate early disease diagnosis and prevention. Here, we developed a computationally statistical method, referring to Multi-Omics Matrix Factorization (MOMF), to estimate the cell-type compositions of bulk RNA sequencing (RNA-seq) data by leveraging cell type-specific gene expression levels from single-cell RNA sequencing (scRNA-seq) data. MOMF not only directly models the count nature of gene expression data, but also effectively accounts for the uncertainty of cell type-specific mean gene expression levels. We demonstrate the benefits of MOMF through three real data applications, i.e., Glioblastomas (GBM), colorectal cancer (CRC) and type II diabetes (T2D) studies. MOMF is able to accurately estimate disease-related cell type proportions, i.e., oligodendrocyte progenitor cells and macrophage cells, which are strongly associated with the survival of GBM and CRC, respectively.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] NDRindex: a method for the quality assessment of single-cell RNA-Seq preprocessing data
    Ruiyu Xiao
    Guoshan Lu
    Wanqian Guo
    Shuilin Jin
    BMC Bioinformatics, 21
  • [32] An accurate and robust imputation method scImpute for single-cell RNA-seq data
    Wei Vivian Li
    Jingyi Jessica Li
    Nature Communications, 9
  • [33] Modeling group heteroscedasticity in single-cell RNA-seq pseudo-bulk data
    You, Yue
    Dong, Xueyi
    Wee, Yong Kiat
    Maxwell, Mhairi J.
    Alhamdoosh, Monther
    Smyth, Gordon K.
    Hickey, Peter F.
    Ritchie, Matthew E.
    Law, Charity W.
    GENOME BIOLOGY, 2023, 24 (01)
  • [34] scDFC: A deep fusion clustering method for single-cell RNA-seq data
    Hu, Dayu
    Liang, Ke
    Zhou, Sihang
    Tu, Wenxuan
    Liu, Meng
    Liu, Xinwang
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [35] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    McDavid, Andrew
    Finak, Greg
    Gottardo, Raphael
    NATURE BIOTECHNOLOGY, 2016, 34 (06) : 591 - 593
  • [36] NDRindex: A method for the quality assessment of single-cell RNA-Seq preprocessing data
    Xiao, Ruiyu
    Lu, Guoshan
    Jin, Shuilin
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 1792 - 1800
  • [37] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    Andrew McDavid
    Greg Finak
    Raphael Gottardo
    Nature Biotechnology, 2016, 34 : 591 - 593
  • [38] Differential transcript usage analysis of bulk and single-cell RNA-seq data with DTUrtle
    Tekath, Tobias
    Dugas, Martin
    BIOINFORMATICS, 2021, 37 (21) : 3781 - 3787
  • [39] An accurate and robust imputation method scImpute for single-cell RNA-seq data
    Li, Wei Vivian
    Li, Jingyi Jessica
    NATURE COMMUNICATIONS, 2018, 9
  • [40] Modeling group heteroscedasticity in single-cell RNA-seq pseudo-bulk data
    Yue You
    Xueyi Dong
    Yong Kiat Wee
    Mhairi J. Maxwell
    Monther Alhamdoosh
    Gordon K. Smyth
    Peter F. Hickey
    Matthew E. Ritchie
    Charity W. Law
    Genome Biology, 24