An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data

被引:16
|
作者
Sun, Xifang [1 ]
Sun, Shiquan [2 ,3 ]
Yang, Sheng [4 ]
机构
[1] Xian Shiyou Univ, Sch Sci, Dept Math, Xian 710065, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[3] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[4] Nanjing Med Univ, Sch Publ Hlth, Dept Biostat, Nanjing 211166, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
cell-type compositions; deconvolution; single-cell RNA-seq; nonnegative matrix factorization; gene expression; HETEROGENEITY; ORIGIN;
D O I
10.3390/cells8101161
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Estimating cell type compositions for complex diseases is an important step to investigate the cellular heterogeneity for understanding disease etiology and potentially facilitate early disease diagnosis and prevention. Here, we developed a computationally statistical method, referring to Multi-Omics Matrix Factorization (MOMF), to estimate the cell-type compositions of bulk RNA sequencing (RNA-seq) data by leveraging cell type-specific gene expression levels from single-cell RNA sequencing (scRNA-seq) data. MOMF not only directly models the count nature of gene expression data, but also effectively accounts for the uncertainty of cell type-specific mean gene expression levels. We demonstrate the benefits of MOMF through three real data applications, i.e., Glioblastomas (GBM), colorectal cancer (CRC) and type II diabetes (T2D) studies. MOMF is able to accurately estimate disease-related cell type proportions, i.e., oligodendrocyte progenitor cells and macrophage cells, which are strongly associated with the survival of GBM and CRC, respectively.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] High-Order Correlation Integration for Single-Cell or Bulk RNA-seq Data Analysis
    Tang, Hui
    Zeng, Tao
    Chen, Luonan
    FRONTIERS IN GENETICS, 2019, 10
  • [22] scDFC: A deep fusion clustering method for single-cell RNA-seq data
    Hu, Dayu
    Liang, Ke
    Zhou, Sihang
    Tu, Wenxuan
    Liu, Meng
    Liu, Xinwang
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [23] A Survey on Methods for Predicting Polyadenylation Sites from DNA Sequences, Bulk RNA-seq, and Single-cell RNA-seq
    Ye, Wenbin
    Lian, Qiwei
    Ye, Congting
    Wu, Xiaohui
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) : 67 - 83
  • [24] Single-cell RNA-seq and bulk RNA-seq explore the prognostic value of exhausted T cells in hepatocellular carcinoma
    Tang, Xiaolong
    Miao, Yandong
    Yang, Lixia
    Ha, Wuhua
    Li, Zheng
    Mi, Denghai
    IET SYSTEMS BIOLOGY, 2023, 17 (04) : 228 - 244
  • [25] A deep matrix factorization based approach for single-cell RNA-seq data clustering
    Liang, Zhenlan
    Zheng, Ruiqing
    Chen, Siqi
    Yan, Xuhua
    Li, Min
    METHODS, 2022, 205 : 114 - 122
  • [26] Improved detection of tumor suppressor events in single-cell RNA-Seq data
    Teschendorff, Andrew E.
    Wang, Ning
    NPJ GENOMIC MEDICINE, 2020, 5 (01)
  • [27] SC3: consensus clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Kirschner, Kristina
    Schaub, Michael T.
    Andrews, Tallulah
    Yiu, Andrew
    Chandra, Tamir
    Natarajan, Kedar N.
    Reik, Wolf
    Barahona, Mauricio
    Green, Anthony R.
    Hemberg, Martin
    NATURE METHODS, 2017, 14 (05) : 483 - +
  • [28] Clustering single-cell RNA-seq data by rank constrained similarity learning
    Mei, Qinglin
    Li, Guojun
    Su, Zhengchang
    BIOINFORMATICS, 2021, 37 (19) : 3235 - 3242
  • [29] Classification of low quality cells from single-cell RNA-seq data
    Ilicic, Tomislav
    Kim, Jong Kyoung
    Kolodziejczyk, Aleksandra A.
    Bagger, Frederik Otzen
    McCarthy, Davis James
    Marioni, John C.
    Teichmann, Sarah A.
    GENOME BIOLOGY, 2016, 17
  • [30] Identification of innate lymphoid cells in single-cell RNA-Seq data
    Madeleine Suffiotti
    Santiago J. Carmona
    Camilla Jandus
    David Gfeller
    Immunogenetics, 2017, 69 : 439 - 450