An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data

被引:16
|
作者
Sun, Xifang [1 ]
Sun, Shiquan [2 ,3 ]
Yang, Sheng [4 ]
机构
[1] Xian Shiyou Univ, Sch Sci, Dept Math, Xian 710065, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[3] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[4] Nanjing Med Univ, Sch Publ Hlth, Dept Biostat, Nanjing 211166, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
cell-type compositions; deconvolution; single-cell RNA-seq; nonnegative matrix factorization; gene expression; HETEROGENEITY; ORIGIN;
D O I
10.3390/cells8101161
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Estimating cell type compositions for complex diseases is an important step to investigate the cellular heterogeneity for understanding disease etiology and potentially facilitate early disease diagnosis and prevention. Here, we developed a computationally statistical method, referring to Multi-Omics Matrix Factorization (MOMF), to estimate the cell-type compositions of bulk RNA sequencing (RNA-seq) data by leveraging cell type-specific gene expression levels from single-cell RNA sequencing (scRNA-seq) data. MOMF not only directly models the count nature of gene expression data, but also effectively accounts for the uncertainty of cell type-specific mean gene expression levels. We demonstrate the benefits of MOMF through three real data applications, i.e., Glioblastomas (GBM), colorectal cancer (CRC) and type II diabetes (T2D) studies. MOMF is able to accurately estimate disease-related cell type proportions, i.e., oligodendrocyte progenitor cells and macrophage cells, which are strongly associated with the survival of GBM and CRC, respectively.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)
  • [2] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [3] Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data
    Chen, Siqi
    Yan, Xuhua
    Zheng, Ruiqing
    Li, Min
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [4] Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data
    Gao, Yipeng
    Li, Wei
    MRNA 3' END PROCESSING AND METABOLISM, 2021, 655 : 225 - 243
  • [5] Comparison of transformations for single-cell RNA-seq data
    Constantin Ahlmann-Eltze
    Wolfgang Huber
    Nature Methods, 2023, 20 : 665 - 672
  • [6] Comparison of transformations for single-cell RNA-seq data
    Ahlmann-Eltze, Constantin
    Huber, Wolfgang
    NATURE METHODS, 2023, 20 (05) : 665 - +
  • [7] A general and flexible method for signal extraction from single-cell RNA-seq data
    Davide Risso
    Fanny Perraudeau
    Svetlana Gribkova
    Sandrine Dudoit
    Jean-Philippe Vert
    Nature Communications, 9
  • [8] A general and flexible method for signal extraction from single-cell RNA-seq data
    Risso, Davide
    Perraudeau, Fanny
    Gribkova, Svetlana
    Dudoit, Sandrine
    Vert, Jean-Philippe
    NATURE COMMUNICATIONS, 2018, 9
  • [9] Single-cell RNA-Seq and bulk RNA-Seq reveal reliable diagnostic and prognostic biomarkers for CRC
    Zhang, Xing
    Yang, Longkun
    Deng, Ying
    Huang, Zhicong
    Huang, Hao
    Wu, Yuying
    He, Baochang
    Hu, Fulan
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (12) : 9805 - 9821
  • [10] Single-cell RNA-Seq and bulk RNA-Seq reveal reliable diagnostic and prognostic biomarkers for CRC
    Xing Zhang
    Longkun Yang
    Ying Deng
    Zhicong Huang
    Hao Huang
    Yuying Wu
    Baochang He
    Fulan Hu
    Journal of Cancer Research and Clinical Oncology, 2023, 149 : 9805 - 9821