An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data

被引:16
|
作者
Sun, Xifang [1 ]
Sun, Shiquan [2 ,3 ]
Yang, Sheng [4 ]
机构
[1] Xian Shiyou Univ, Sch Sci, Dept Math, Xian 710065, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[3] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[4] Nanjing Med Univ, Sch Publ Hlth, Dept Biostat, Nanjing 211166, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
cell-type compositions; deconvolution; single-cell RNA-seq; nonnegative matrix factorization; gene expression; HETEROGENEITY; ORIGIN;
D O I
10.3390/cells8101161
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Estimating cell type compositions for complex diseases is an important step to investigate the cellular heterogeneity for understanding disease etiology and potentially facilitate early disease diagnosis and prevention. Here, we developed a computationally statistical method, referring to Multi-Omics Matrix Factorization (MOMF), to estimate the cell-type compositions of bulk RNA sequencing (RNA-seq) data by leveraging cell type-specific gene expression levels from single-cell RNA sequencing (scRNA-seq) data. MOMF not only directly models the count nature of gene expression data, but also effectively accounts for the uncertainty of cell type-specific mean gene expression levels. We demonstrate the benefits of MOMF through three real data applications, i.e., Glioblastomas (GBM), colorectal cancer (CRC) and type II diabetes (T2D) studies. MOMF is able to accurately estimate disease-related cell type proportions, i.e., oligodendrocyte progenitor cells and macrophage cells, which are strongly associated with the survival of GBM and CRC, respectively.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)
  • [2] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [3] Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data
    Chen, Siqi
    Yan, Xuhua
    Zheng, Ruiqing
    Li, Min
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [4] Challenges in unsupervised clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Andrews, Tallulah S.
    Hemberg, Martin
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 273 - 282
  • [5] Identification of innate lymphoid cells in single-cell RNA-Seq data
    Suffiotti, Madeleine
    Carmona, Santiago J.
    Jandus, Camilla
    Gfeller, David
    IMMUNOGENETICS, 2017, 69 (07) : 439 - 450
  • [6] Impact of similarity metrics on single-cell RNA-seq data clustering
    Kim, Taiyun
    Chen, Irene Rui
    Lin, Yingxin
    Wang, Andy Yi-Yang
    Yang, Jean Yee Hwa
    Yang, Pengyi
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (06) : 2316 - 2326
  • [7] A general and flexible method for signal extraction from single-cell RNA-seq data
    Risso, Davide
    Perraudeau, Fanny
    Gribkova, Svetlana
    Dudoit, Sandrine
    Vert, Jean-Philippe
    NATURE COMMUNICATIONS, 2018, 9
  • [8] An accurate and robust imputation method scImpute for single-cell RNA-seq data
    Li, Wei Vivian
    Li, Jingyi Jessica
    NATURE COMMUNICATIONS, 2018, 9
  • [9] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322
  • [10] Single-cell RNA-seq data clustering: A survey with performance comparison study
    Li, Ruiyi
    Guan, Jihong
    Zhou, Shuigeng
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2020, 18 (04)