1064 nm Dispersive Raman Microspectroscopy and Optical Trapping of Pharmaceutical Aerosols

被引:18
|
作者
Gallimore, Peter J. [1 ]
Davidson, Nick M. [2 ]
Kalberer, Markus [1 ]
Pope, Francis D. [2 ]
Ward, Andrew D. [3 ]
机构
[1] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[2] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England
[3] Rutherford Appleton Lab, Res Complex Harwell, Cent Laser Facil, Didcot OX11 0FA, Oxon, England
基金
英国科学技术设施理事会; 欧洲研究理事会;
关键词
METERED-DOSE INHALERS; SPECTROSCOPY; PARTICLES; TWEEZERS; CELLS; POLYMORPHS; SPECTRA; PMDI;
D O I
10.1021/acs.analchem.8b00817
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Raman spectroscopy is a powerful tool for investigating chemical composition. Coupling Raman spectroscopy with optical microscopy (Raman microspectroscopy) and optical trapping (Raman tweezers) allows microscopic length scales and, hence, femtolitre volumes to be probed. Raman microspectroscopy typically uses UV/visible excitation lasers, but many samples, including organic molecules and complex tissue samples, fluoresce strongly at these wavelengths. Here we report the development and application of dispersive Raman microspectroscopy designed around a near-infrared continuous wave 1064 nm excitation light source. We analyze microparticles (1-5 pm diameter) composed of polystyrene latex and from three real-world pressurized metered dose inhalers (pMDIs) used in the treatment of asthma: salmeterol xinafoate (Serevent), salbutamol sulfate (Salamol), and ciclesonide (Alvesco). For the first time, single particles are captured, optically levitated, and analyzed using the same 1064 nm laser, which permits a convenient nondestructive chemical analysis of the true aerosol phase. We show that particles exhibiting overwhelming fluorescence using a visible laser (514.5 nm) can be successfully analyzed with 1064 nm excitation, irrespective of sample composition and irradiation time. Spectra are acquired rapidly (1-5 min) with a wavelength resolution of 2 nm over a wide wavenumber range (500-3100 cm(-1)). This is despite the microscopic sample size and low Raman scattering efficiency at 1064 nm. Spectra of individual pMDI particles compare well to bulk samples, and the Serevent pMDI delivers the thermodynamically preferred crystal form of salmeterol xinafoate. 1064 nm dispersive Raman microspectroscopy is a promising technique that could see diverse applications for samples where fluorescence-free characterization is required with high spatial resolution.
引用
收藏
页码:8838 / 8844
页数:7
相关论文
共 50 条
  • [21] Optical trapping of gold aerosols
    Schmitt, Regina K.
    Jauffred, Liselotte
    Taheri, S. Mohammad-Reza
    Linke, Heiner
    Oddershed, Lene B.
    OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION XII, 2015, 9548
  • [22] Design of a Dispersive 1064 nm Fiber Probe Raman Imaging Spectrometer and Its Application to Human Bladder Resectates
    Munoz-Bolanos, Juan David
    Shaik, Tanveer Ahmed
    Miernik, Arkadiusz
    Popp, Juergen
    Krafft, Christoph
    APPLIED SCIENCES-BASEL, 2024, 14 (11):
  • [24] An Optical Model for Quantitative Raman Microspectroscopy
    Hollis, Joseph Razzell
    Rheingold, David
    Bhartia, Rohit
    Beegle, Luther W.
    APPLIED SPECTROSCOPY, 2020, 74 (06) : 684 - 700
  • [25] Characterization of dust aerosols with dual wavelengths (532 nm/1064 nm) polarization lidar
    Park, Chan Bong
    Lee, Choo Hie
    Sugimoto, Nobuo
    2007 PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, VOLS 1-4, 2007, : 68 - +
  • [26] Multifocal 1064 nm Raman imaging of carbon nanotubes
    Ji, Haojie
    Nava, Valeria
    Yang, Yu
    Chan, James W.
    OPTICS LETTERS, 2020, 45 (18) : 5132 - 5135
  • [27] NIR FT Raman examination of phthalocyanines at 1064 nm
    Dent, G
    Farrell, F
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1997, 53 (01) : 21 - 23
  • [28] Calibration of Raman Spectroscopy at 1064 nm for beeswax quantification
    Pan, A.
    Chiussi, S.
    Serra, J.
    Gonzalez, P.
    Leon, B.
    APPLIED SPECTROSCOPY, 2007, 61 (11) : 1259 - 1264
  • [29] Dispersive Raman spectroscopy excited at 1064 nm to classify the botanic origin of honeys from Calabria and quantify the sugar profile
    Mignani, A. G.
    Ciaccheri, L.
    Mencaglia, A. A.
    Di Sanzo, R.
    Carabetta, S.
    Russo, M. T.
    ADVANCED ENVIRONMENTAL, CHEMICAL, AND BIOLOGICAL SENSING TECHNOLOGIES XII, 2015, 9486
  • [30] Detection of Azo Dyes in Curry Powder Using a 1064-nm Dispersive Point-Scan Raman System
    Dhakal, Sagar
    Chao, Kuanglin
    Schmidt, Walter
    Qin, Jianwei
    Kim, Moon
    Huang, Qing
    APPLIED SCIENCES-BASEL, 2018, 8 (04):