1064 nm Dispersive Raman Microspectroscopy and Optical Trapping of Pharmaceutical Aerosols

被引:18
|
作者
Gallimore, Peter J. [1 ]
Davidson, Nick M. [2 ]
Kalberer, Markus [1 ]
Pope, Francis D. [2 ]
Ward, Andrew D. [3 ]
机构
[1] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[2] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England
[3] Rutherford Appleton Lab, Res Complex Harwell, Cent Laser Facil, Didcot OX11 0FA, Oxon, England
基金
英国科学技术设施理事会; 欧洲研究理事会;
关键词
METERED-DOSE INHALERS; SPECTROSCOPY; PARTICLES; TWEEZERS; CELLS; POLYMORPHS; SPECTRA; PMDI;
D O I
10.1021/acs.analchem.8b00817
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Raman spectroscopy is a powerful tool for investigating chemical composition. Coupling Raman spectroscopy with optical microscopy (Raman microspectroscopy) and optical trapping (Raman tweezers) allows microscopic length scales and, hence, femtolitre volumes to be probed. Raman microspectroscopy typically uses UV/visible excitation lasers, but many samples, including organic molecules and complex tissue samples, fluoresce strongly at these wavelengths. Here we report the development and application of dispersive Raman microspectroscopy designed around a near-infrared continuous wave 1064 nm excitation light source. We analyze microparticles (1-5 pm diameter) composed of polystyrene latex and from three real-world pressurized metered dose inhalers (pMDIs) used in the treatment of asthma: salmeterol xinafoate (Serevent), salbutamol sulfate (Salamol), and ciclesonide (Alvesco). For the first time, single particles are captured, optically levitated, and analyzed using the same 1064 nm laser, which permits a convenient nondestructive chemical analysis of the true aerosol phase. We show that particles exhibiting overwhelming fluorescence using a visible laser (514.5 nm) can be successfully analyzed with 1064 nm excitation, irrespective of sample composition and irradiation time. Spectra are acquired rapidly (1-5 min) with a wavelength resolution of 2 nm over a wide wavenumber range (500-3100 cm(-1)). This is despite the microscopic sample size and low Raman scattering efficiency at 1064 nm. Spectra of individual pMDI particles compare well to bulk samples, and the Serevent pMDI delivers the thermodynamically preferred crystal form of salmeterol xinafoate. 1064 nm dispersive Raman microspectroscopy is a promising technique that could see diverse applications for samples where fluorescence-free characterization is required with high spatial resolution.
引用
收藏
页码:8838 / 8844
页数:7
相关论文
共 50 条
  • [1] Long-Wavelength Dispersive 1064 nm Raman: In-Line Pharmaceutical Compound Identification
    Dentinger, Clare
    Pullins, Steven
    Bergles, Eric
    SPECTROSCOPY, 2011, 26 (12) : 94 - 94
  • [2] CLASSIFICATION OF KIDNEY TUMORS WITH 1064 NM DISPERSIVE RAMAN SPECTROSCOPY
    Haifler, Miki
    Pence, Isaac
    Ristau, Benjamin
    Correa, Andres
    Joshi, Shreyas
    Greenberg, Richard
    Chen, David
    Smaldone, Marc
    Kutikov, Alexander
    Viterbo, Rosalia
    Uzzo, Robert
    Zisman, Amnon
    Yaakov, Beer
    Mahadevan-Jansen, Anita
    Patil, Chetan
    JOURNAL OF UROLOGY, 2017, 197 (04): : E704 - E704
  • [3] Applications of 1064 nm Dispersive Raman Systems in Biofuel Research
    Hammock, Jason
    Cong, Peijun
    Bergles, Eric
    Yang, William
    SPECTROSCOPY, 2010, : 13 - 13
  • [4] Discrimination of liver malignancies with 1064 nm dispersive Raman spectroscopy
    Pence, Isaac J.
    Patil, Chetan A.
    Lieber, Chad A.
    Mahadevan-Jansen, Anita
    BIOMEDICAL OPTICS EXPRESS, 2015, 6 (08): : 2724 - 2737
  • [5] Long-Wavelength Dispersive 1064 nm Handheld Raman
    Dentinger, Claire
    SPECTROSCOPY, 2013, : 24 - 24
  • [6] Applications of 1064 nm Dispersive Raman Systems in Biofuel Research
    Bergles, Eric
    Yang, William
    SPECTROSCOPY, 2011, : 13 - 13
  • [7] Tissue measurement using 1064 nm dispersive Raman spectroscopy
    Lieber, Chad A.
    Wu, Huawen
    Yang, William
    ADVANCED BIOMEDICAL AND CLINICAL DIAGNOSTIC SYSTEMS XI, 2013, 8572
  • [8] 1064 nm dispersive multichannel Raman spectroscopy for the analysis of plant lignin
    Meyer, Matthew W.
    Lupoi, Jason S.
    Smith, Emily A.
    ANALYTICA CHIMICA ACTA, 2011, 706 (01) : 164 - 170
  • [9] Optical trapping of microalgae at 735-1064 nm: Photodamage assessment
    Pilat, Z.
    Jezek, J.
    Sery, M.
    Trtilek, M.
    Nedbal, L.
    Zemanek, P.
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2013, 121 : 27 - 31
  • [10] Improving the imaging speed of 1064 nm dispersive Raman microscopy with multifocal patterned detection
    Navas-Moreno, Maria
    Chan, James W.
    OPTICS LETTERS, 2017, 42 (01) : 37 - 40