Generic torus orbit closures in Schubert varieties

被引:11
|
作者
Lee, Eunjeong [1 ]
Masuda, Mikiya [2 ]
机构
[1] Inst for Basic Sci Korea, Ctr Geometry & Phys, Pohang 37673, South Korea
[2] Osaka City Univ, Grad Sch Sci, Dept Math, Sumiyoshi Ku, Sugimoto, Osaka 5588585, Japan
基金
新加坡国家研究基金会;
关键词
Toric variety; Schubert variety; Pattern avoidance; Poincare polynomial; Forest; Bruhat interval polytope; EQUIVARIANT COHOMOLOGY; BOTT TOWERS; CHARACTER; NUMBERS;
D O I
10.1016/j.jcta.2019.105143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The closure of a generic torus orbit in the flag variety G/B of type A(n-1) is known to be a permutohedral variety and well studied. In this paper we introduce the notion of a generic torus orbit in the Schubert variety X-w (w is an element of S-n) and study its closure Y-w. We identify the maximal cone in the fan of Y-w corresponding to a fixed point uB (u <= w), associate a graph Gamma(w) (u) to each u <= w, and show that Y-w is smooth at uB if and only if Gamma(w) (u) is a forest. We also introduce a polynomial A(w)(t) for each w, which agrees with the Eulerian polynomial when w is the longest element of S-n, and show that the Poincare polynomial of Y-w agrees with A(w)(t(2)) when Y-w is smooth. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:44
相关论文
共 50 条
  • [1] ON SCHUBERT VARIETIES
    Karuppuchamy, Paramasamy
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (04) : 1365 - 1368
  • [2] Torus quotients of Schubert varieties in the Grassmannian G2,n
    Kannan, S. Senthamarai
    Nayek, Arpita
    Saha, Pinakinath
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (01): : 273 - 293
  • [3] On Frobenius splitting of orbit closures of spherical subgroups in flag varieties
    Xuhua He
    Jesper Funch Thomsen
    Transformation Groups, 2012, 17 : 691 - 715
  • [4] LS algebras and application to Schubert varieties
    R. Chirivì
    Transformation Groups, 2000, 5 : 245 - 264
  • [5] POLYNOMIALS FOR SYMMETRIC ORBIT CLOSURES IN THE FLAG VARIETY
    Wyser B.
    Yong A.
    Transformation Groups, 2017, 22 (1) : 267 - 290
  • [6] Schubert Varieties and Free Braidedness
    R.M. Green
    J. Losonczy
    Transformation Groups, 2004, 9 : 327 - 336
  • [7] COMINUSCULE POINTS AND SCHUBERT VARIETIES
    Graham, William
    Kreiman, Victor
    ANNALES DE L INSTITUT FOURIER, 2021, 71 (06) : 2519 - 2548
  • [8] Toric degenerations of Schubert varieties
    Caldero P.
    Transformation Groups, 2002, 7 (1) : 51 - 60
  • [9] On Tangent Cones of Schubert Varieties
    Fuchs D.
    Kirillov A.
    Morier-Genoud S.
    Ovsienko V.
    Arnold Mathematical Journal, 2017, 3 (4) : 451 - 482
  • [10] Schubert varieties and short braidedness
    Fan C.K.
    Transformation Groups, 1998, 3 (1) : 51 - 56