Fractional Integrable Nonlinear Soliton Equations

被引:55
作者
Ablowitz, Mark J. [1 ]
Been, Joel B. [2 ,3 ]
Carr, Lincoln D. [2 ,3 ,4 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Colorado Sch Mines, Dept Appl Math & Stat, Golden, CO 80401 USA
[3] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[4] Colorado Sch Mines, Quantum Engn Program, Golden, CO 80401 USA
关键词
SCHRODINGER-EQUATION; ANOMALOUS DIFFUSION; DISPERSION; WAVES; TRANSPORT; DYNAMICS;
D O I
10.1103/PhysRevLett.128.184101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonlinear integrable equations serve as a foundation for nonlinear dynamics, and fractional equations are well known in anomalous diffusion. We connect these two fields by presenting the discovery of a new class of integrable fractional nonlinear evolution equations describing dispersive transport in fractional media. These equations can be constructed from nonlinear integrable equations using a widely generalizable mathematical process utilizing completeness relations, dispersion relations, and inverse scattering transform techniques. As examples, this general method is used to characterize fractional extensions to two physically relevant, pervasive integrable nonlinear equations: the Korteweg-deVries and nonlinear Schrodinger equations. These equations are shown to predict superdispersive transport of nondissipative solitons in fractional media.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Soliton interactions for coupled nonlinear Schrodinger equations with symbolic computation [J].
Liu, Wen-Jun ;
Pan, Nan ;
Huang, Long-Gang ;
Lei, Ming .
NONLINEAR DYNAMICS, 2014, 78 (01) :755-770
[42]   N-soliton solutions and elastic interaction of the coupled lattice soliton equations for nonlinear waves [J].
Wen, Xiao-Yong ;
Gao, Yi-Tian .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (01) :99-107
[43]   Exact quasi-soliton solutions and soliton interaction for the inhomogeneous coupled nonlinear Schrodinger equations [J].
Tiofack, C. G. Latchio ;
Mohamadou, Alidou ;
Kofane, Timoleon C. ;
Porsezian, K. .
JOURNAL OF MODERN OPTICS, 2010, 57 (04) :261-272
[44]   Partial fractional derivatives of Riesz type and nonlinear fractional differential equations [J].
Tarasov, Vasily E. .
NONLINEAR DYNAMICS, 2016, 86 (03) :1745-1759
[45]   Exact analytical soliton solutions of N-component coupled nonlinear Schr?dinger equations with arbitrary nonlinear parameters [J].
Mao, Ning ;
Zhao, Li-Chen .
PHYSICAL REVIEW E, 2022, 106 (06)
[46]   Schemes for Generating Different Nonlinear Schrodinger Integrable Equations and Their Some Properties [J].
Zhang, Yu-feng ;
Wang, Hai-feng ;
Bai, Na .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (03) :579-600
[47]   Integrable nonautonomous nonlinear Schrodinger equations are equivalent to the standard autonomous equation [J].
Kundu, Anjan .
PHYSICAL REVIEW E, 2009, 79 (01)
[48]   Spatiotemporal Soliton Interaction of Saturable Nonlinear Schrodinger Equations in Spatial Dimensions Higher Than 1 [J].
Nguyen, Quan M. M. ;
Huynh, Toan T. T. .
ACTA MATHEMATICA VIETNAMICA, 2023, 48 (01) :193-208
[49]   A variety of soliton solutions for the fractional Wazwaz-Benjamin-Bona-Mahony equations [J].
Seadawy, Aly R. ;
Ali, Khalid K. ;
Nuruddeen, R. I. .
RESULTS IN PHYSICS, 2019, 12 :2234-2241
[50]   GROUND STATES OF NONLINEAR SCHRODINGER EQUATIONS WITH FRACTIONAL LAPLACIANS [J].
Shen, Zupei ;
Han, Zhiqing ;
Zhang, Qinqin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (07) :2115-2125