Fractional Integrable Nonlinear Soliton Equations

被引:48
作者
Ablowitz, Mark J. [1 ]
Been, Joel B. [2 ,3 ]
Carr, Lincoln D. [2 ,3 ,4 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Colorado Sch Mines, Dept Appl Math & Stat, Golden, CO 80401 USA
[3] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[4] Colorado Sch Mines, Quantum Engn Program, Golden, CO 80401 USA
关键词
SCHRODINGER-EQUATION; ANOMALOUS DIFFUSION; DISPERSION; WAVES; TRANSPORT; DYNAMICS;
D O I
10.1103/PhysRevLett.128.184101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonlinear integrable equations serve as a foundation for nonlinear dynamics, and fractional equations are well known in anomalous diffusion. We connect these two fields by presenting the discovery of a new class of integrable fractional nonlinear evolution equations describing dispersive transport in fractional media. These equations can be constructed from nonlinear integrable equations using a widely generalizable mathematical process utilizing completeness relations, dispersion relations, and inverse scattering transform techniques. As examples, this general method is used to characterize fractional extensions to two physically relevant, pervasive integrable nonlinear equations: the Korteweg-deVries and nonlinear Schrodinger equations. These equations are shown to predict superdispersive transport of nondissipative solitons in fractional media.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Nonlinear subdiffusive fractional equations and the aggregation phenomenon [J].
Fedotov, Sergei .
PHYSICAL REVIEW E, 2013, 88 (03)
[32]   EXISTENCE OF SOLUTIONS OF NONLINEAR FRACTIONAL PANTOGRAPH EQUATIONS [J].
Balachandran, K. ;
Kiruthika, S. ;
Trujillo, J. J. .
ACTA MATHEMATICA SCIENTIA, 2013, 33 (03) :712-720
[33]   Soliton states of Maxwell's equations and nonlinear Schrodinger equation [J].
陈翼强 .
Science China Mathematics, 1997, (10) :1073-1081
[34]   Riemann-Hilbert approach and soliton classification for a nonlocal integrable nonlinear Schrodinger equation of reverse-time type [J].
Wu, Jianping .
NONLINEAR DYNAMICS, 2022, 107 (01) :1127-1139
[35]   MIXED DIMENSIONAL INFINITE SOLITON TRAINS FOR NONLINEAR SCHRODINGER EQUATIONS [J].
Lin, Liren ;
Tsai, Tai-Peng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (01) :295-336
[36]   Numerical study of vector solitons with the oscillatory phase backgrounds in the integrable coupled nonlinear Schrodinger equations [J].
Liu, Lei ;
Zhou, Xuan-Xuan ;
Xie, Xi-Yang ;
Sun, Wen-Rong .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 228 :466-484
[37]   Numerical Methods for Some Nonlinear Schrodinger Equations in Soliton Management [J].
He, Ying ;
Zhao, Xiaofei .
JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (02)
[38]   Soliton states of Maxwell's equations and nonlinear Schrodinger equation [J].
Chen, YQ .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 1997, 40 (10) :1073-1081
[39]   Soliton interactions for coupled nonlinear Schrodinger equations with symbolic computation [J].
Liu, Wen-Jun ;
Pan, Nan ;
Huang, Long-Gang ;
Lei, Ming .
NONLINEAR DYNAMICS, 2014, 78 (01) :755-770
[40]   Soliton interaction in the coupled mixed derivative nonlinear Schrodinger equations [J].
Zhang, Hai-Qiang ;
Tian, Bo ;
Lue, Xing ;
Li, He ;
Meng, Xiang-Hua .
PHYSICS LETTERS A, 2009, 373 (47) :4315-4321