Fractional Integrable Nonlinear Soliton Equations

被引:48
作者
Ablowitz, Mark J. [1 ]
Been, Joel B. [2 ,3 ]
Carr, Lincoln D. [2 ,3 ,4 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Colorado Sch Mines, Dept Appl Math & Stat, Golden, CO 80401 USA
[3] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[4] Colorado Sch Mines, Quantum Engn Program, Golden, CO 80401 USA
关键词
SCHRODINGER-EQUATION; ANOMALOUS DIFFUSION; DISPERSION; WAVES; TRANSPORT; DYNAMICS;
D O I
10.1103/PhysRevLett.128.184101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonlinear integrable equations serve as a foundation for nonlinear dynamics, and fractional equations are well known in anomalous diffusion. We connect these two fields by presenting the discovery of a new class of integrable fractional nonlinear evolution equations describing dispersive transport in fractional media. These equations can be constructed from nonlinear integrable equations using a widely generalizable mathematical process utilizing completeness relations, dispersion relations, and inverse scattering transform techniques. As examples, this general method is used to characterize fractional extensions to two physically relevant, pervasive integrable nonlinear equations: the Korteweg-deVries and nonlinear Schrodinger equations. These equations are shown to predict superdispersive transport of nondissipative solitons in fractional media.
引用
收藏
页数:6
相关论文
共 50 条
[21]   On the Nonautonomous Nonlinear Schrodinger Equations and Soliton Management [J].
Zhao, Dun ;
Luo, Hong-Gang ;
He, Xu-Gang .
NONLINEAR AND MODERN MATHEMATICAL PHYSICS, 2010, 1212 :213-+
[22]   Employing a Fractional Basis Set to Solve Nonlinear Multidimensional Fractional Differential Equations [J].
Rahman, Md. Habibur ;
Bhatti, Muhammad I. ;
Dimakis, Nicholas .
MATHEMATICS, 2023, 11 (22)
[23]   Multi-soliton solutions and Breathers for the generalized coupled nonlinear Hirota equations via the Hirota method [J].
Jia, Ting-Ting ;
Chai, Yu-Zhen ;
Hao, Hui-Qin .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 105 :172-182
[24]   An Alternative Approach to Integrable Discrete Nonlinear Schrodinger Equations [J].
Demontis, Francesco ;
van der Mee, Cornelis .
ACTA APPLICANDAE MATHEMATICAE, 2013, 127 (01) :169-191
[25]   Soliton solutions of nonlinear evolution equations in mathematical physics [J].
Arbabi, Somayeh ;
Najafi, Mohammad .
OPTIK, 2016, 127 (10) :4270-4274
[26]   Integrable nonlocal asymptotic reductions of physically significant nonlinear equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (15)
[27]   On the optical wave structures to the fractional nonlinear integrable coupled Kuralay equation [J].
Li, Ming ;
Muhammad, J. ;
Younas, U. ;
Rezazadeh, Hadi ;
Hosseinzadeh, Mohammad Ali ;
Salahshour, Soheil .
MODERN PHYSICS LETTERS B, 2024, 38 (36)
[28]   Integrable conditions and inhomogeneous soliton solutions of a coupled nonlinear Schrodinger system with distributed coefficients [J].
Liang, Jing-Wei ;
Xu, Tao ;
Tang, Min-Yan ;
Liu, Xiao-Dong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) :329-339
[29]   Bright Soliton Solutions of the Coherently-Coupled Nonlinear Schrodinger Equations in Optical Fibers [J].
Sun, Ya ;
Tian, Bo ;
Wang, Yu-Feng ;
Sun, Wen-Rong ;
Wang, Yun-Po ;
Xie, Xi-Yang .
CHINESE JOURNAL OF PHYSICS, 2015, 53 (04)
[30]   Numerical study of fractional nonlinear Schrodinger equations [J].
Klein, Christian ;
Sparber, Christof ;
Markowich, Peter .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2172)