Fractional Integrable Nonlinear Soliton Equations

被引:48
|
作者
Ablowitz, Mark J. [1 ]
Been, Joel B. [2 ,3 ]
Carr, Lincoln D. [2 ,3 ,4 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Colorado Sch Mines, Dept Appl Math & Stat, Golden, CO 80401 USA
[3] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[4] Colorado Sch Mines, Quantum Engn Program, Golden, CO 80401 USA
关键词
SCHRODINGER-EQUATION; ANOMALOUS DIFFUSION; DISPERSION; WAVES; TRANSPORT; DYNAMICS;
D O I
10.1103/PhysRevLett.128.184101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonlinear integrable equations serve as a foundation for nonlinear dynamics, and fractional equations are well known in anomalous diffusion. We connect these two fields by presenting the discovery of a new class of integrable fractional nonlinear evolution equations describing dispersive transport in fractional media. These equations can be constructed from nonlinear integrable equations using a widely generalizable mathematical process utilizing completeness relations, dispersion relations, and inverse scattering transform techniques. As examples, this general method is used to characterize fractional extensions to two physically relevant, pervasive integrable nonlinear equations: the Korteweg-deVries and nonlinear Schrodinger equations. These equations are shown to predict superdispersive transport of nondissipative solitons in fractional media.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Dynamics of fractional N-soliton solutions with anomalous dispersions of integrable fractional higher-order nonlinear Schrodinger equations
    Weng, Weifang
    Zhang, Minghe
    Zhang, Guoqiang
    Yan, Zhenya
    CHAOS, 2022, 32 (12)
  • [2] Fractional integrable and related discrete nonlinear Schrodinger equations
    Ablowitz, Mark J.
    Been, Joel B.
    Carr, Lincoln D.
    PHYSICS LETTERS A, 2022, 452
  • [3] A class of nonlinear differential equations with fractional integrable impulses
    Wang, JinRong
    Zhang, Yuruo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) : 3001 - 3010
  • [4] Quantized representation of some nonlinear integrable evolution equations on the soliton sector
    Zarmi, Yair
    PHYSICAL REVIEW E, 2011, 83 (05)
  • [5] Soliton solutions for integrable equations in nonlinear optics: Backlund transformation approach
    Nakkeeran, K
    NONLINEARITY, 2002, 15 (06) : 1747 - 1753
  • [6] TWO HIERARCHIES OF NONLINEAR SOLITON EQUATIONS, NEW INTEGRABLE SYMPLECTIC MAP AND DISCRETE INTEGRABLE COUPLINGS
    Sun, Ye-Peng
    Zhao, Hong-Qing
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (24): : 4821 - 4834
  • [7] On the investigation of fractional coupled nonlinear integrable dynamical system: Dynamics of soliton solutions
    Muhammad, Jan
    Younas, Usman
    Rezazadeh, Hadi
    Ali Hosseinzadeh, Mohammad
    Salahshour, Soheil
    MODERN PHYSICS LETTERS B, 2024, 38 (36):
  • [8] Nonlinear differential equations of fractional order in the space of integrable functions
    Kilbas, AA
    Bonilla, B
    Trujillo, J
    DOKLADY MATHEMATICS, 2000, 62 (02) : 222 - 226
  • [9] Data-driven soliton mappings for integrable fractional nonlinear wave equations via deep learning with Fourier neural operator
    Zhong, Ming
    Yan, Zhenya
    CHAOS SOLITONS & FRACTALS, 2022, 165
  • [10] General soliton matrices in the Riemann-Hilbert problem for integrable nonlinear equations
    Shchesnovich, VS
    Yang, JK
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (10) : 4604 - 4639