ON FUNCTIONAL EQUATIONS CONNECTED WITH QUADRATURE RULES

被引:0
作者
Koclega-Kulpa, Barbara [1 ]
Szostok, Tomasz [1 ]
Wasowicz, Szymon [2 ]
机构
[1] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
[2] Univ Bielsko Biala, Dept Math & Comp Sci, PL-43309 Bielsko Biala, Poland
关键词
Approximate integration; functional equations; polynomial functions; quadrature rules;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The functional equations of the form F(y) - F(x) = (y-x)[alpha(0)f(x) + Sigma(n)(k=1)alpha(k)f(lambda(k)x + (1 - lambda(k))y) + alpha(n+1)f(y)] are considered. They are connected with quadrature rules of the approximate integration. We show that such equations characterize polynomials in the class of continuous functions. It is also shown that if the number of components is sufficiently small, then the continuity is forced by the equation itself. Unique solvability of the considered problem are established.
引用
收藏
页码:725 / 736
页数:12
相关论文
共 50 条
[21]   Efficient Gauss Quadrature Rules for Tetrahedral Domain Integrals [J].
Hussain, Farzana ;
Karim, M. S. .
JOURNAL OF ADVANCED MATHEMATICS AND APPLICATIONS, 2014, 3 (01) :74-88
[22]   A New Approach to the Quadrature Rules with Gaussian Weights and Nodes [J].
Criscuolo, Giuliana ;
Cuomo, Salvatore .
APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (05) :2095-2102
[23]   Asymptotic expressions for remainder terms of some quadrature rules [J].
Ujevic, Nenad ;
Bilic, Natasa .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2008, 6 (04) :559-567
[24]   The Gaussian wave packet transform via quadrature rules [J].
Bergold, Paul ;
Lasser, Caroline .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (03) :1785-1820
[25]   QUADRATURE RULES FOR SPLINES OF HIGH SMOOTHNESS ON UNIFORMLY REFINED TRIANGLES [J].
Eddargani, Salah ;
Manni, Carla ;
Speleers, Hendrik .
MATHEMATICS OF COMPUTATION, 2025,
[26]   Generalized Gaussian quadrature rules over regions with parabolic edges [J].
Nagaraja, K. V. ;
Jayan, Sarada .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (12) :1631-1640
[27]   Exponentially fitted quadrature rules of Gauss type for oscillatory integrands [J].
Van Daele, M ;
Vanden Berghe, G ;
Vande Vyver, H .
APPLIED NUMERICAL MATHEMATICS, 2005, 53 (2-4) :509-526
[28]   Quadrature rules with neighborhood of spherical designs on the two-sphere [J].
Zhou, Yang .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 367
[29]   Simple numerical quadrature rules for Gaussian chain polymer density functional calculations in 3D and implementation on parallel platforms [J].
Maurits, NM ;
Fraaije, JGEM ;
Altevogt, P ;
Evers, OA .
COMPUTATIONAL & THEORETICAL POLYMER SCIENCE, 1996, 6 (1-2) :1-8
[30]   Quadrature rules for polynomial modifications of Bernstein measures exact for analytic functions [J].
Berriochoa, E. ;
Cachafeiro, A. ;
Garcia-Amor, J. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (06) :409-422