Foliations of Hyperbolic Space by Constant Mean Curvature Hypersurfaces

被引:3
作者
Coskunuzer, Baris [1 ]
机构
[1] Koc Univ, Dept Math Sariyer, TR-34450 Istanbul, Turkey
关键词
STRONG MAXIMUM PRINCIPLE; ASYMPTOTIC BOUNDARY; REGULARITY; EXISTENCE;
D O I
10.1093/imrn/rnp175
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the constant mean curvature hypersurfaces in Hn+1 spanning the boundary of a star-shaped C-1,C-1 domain in S-infinity(n)(Hn+1) give a foliation of Hn+1. We also show that if Gamma is a closed codimension-1 C-2,C-alpha submanifold in S-infinity(n)(Hn+1) bounding a unique constant mean curvature hypersurface Sigma(H) in Hn+1 with partial derivative(infinity)Sigma(H) = Gamma for any H is an element of (-1,1), then the constant mean curvature hypersurfaces {Sigma(H)} foliate Hn+1.
引用
收藏
页码:1417 / 1431
页数:15
相关论文
共 22 条
[1]  
Alencar H, 1997, B SCI MATH, V121, P61
[2]   COMPLETE MINIMAL HYPERSURFACES IN HYPERBOLIC N-MANIFOLDS [J].
ANDERSON, MT .
COMMENTARII MATHEMATICI HELVETICI, 1983, 58 (02) :264-290
[3]   COMPLETE MINIMAL VARIETIES IN HYPERBOLIC SPACE [J].
ANDERSON, MT .
INVENTIONES MATHEMATICAE, 1982, 69 (03) :477-494
[4]  
[Anonymous], 1972, Bulletin of the London Mathematical Society, DOI [10.1112/blms/4.3.257, DOI 10.1112/BLMS/4.3.257]
[5]   Foliations of hyperbolic space by constant mean curvature surfaces sharing ideal boundary [J].
Chopp, D ;
Velling, JA .
EXPERIMENTAL MATHEMATICS, 2003, 12 (03) :339-350
[6]  
Colding T. H., 1999, Courant Lecture Notes in Mathematics, Courant Lecture Notes in Mathematics, V4
[7]  
COSKUNUZER B, ARXIV09070552
[8]  
COSKUNUZER B, MATHDG0505593
[9]   Minimizing constant mean curvature hypersurfaces in hyperbolic space [J].
Coskunuzer, Baris .
GEOMETRIAE DEDICATA, 2006, 118 (01) :157-171
[10]  
Epstein D. B. A., 1987, LONDON MATH SOC LECT, V111, P113