Compressible, isotropic hyperelastic materials capable of sustaining axisymmetric, antiplane shear deformations

被引:0
作者
Beatty, MF [1 ]
Jiang, Q [1 ]
机构
[1] Univ Nebraska, Lincoln, NE 68588 USA
来源
CONTEMPORARY RESEARCH IN THE MECHANICS AND MATHEMATICS OF MATERIALS | 1996年
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Antiplane shear deformations are not controllable in every compressible or incompressible, homogeneous and isotropic elastic material. On the other hand, for both compressible and incompressible materials, Knowles has presented conditions on the strain energy function necessary and sufficient to determine whether a specified homogeneous and isotropic hyperelastic material having a monotone shear stress response function can sustain general, non-axisymmetric, antiplane sheer deformations. For compressible materials, he finds two conditions. Under a weaker condition on the shear response function, Jiang and Beatty derived a single necessary and sufficient condition on the strain energy function in order that the material may support axisymmetric, antiplane shear deformations; and they proved that while Knowles's conditions for general antiplane sheer deformations suffice, they are not necessary for a hyperelastic material to sustain axisymmetric, antiplane shear deformations. Here Ne present a somewhat easier proof of the theorem. The simplicity of the result in applications is illustrated in some examples.
引用
收藏
页码:133 / 144
页数:4
相关论文
共 18 条
[1]  
ADKINS JE, 1954, P CAMB PHILOS SOC, V50, P334
[2]  
[Anonymous], APPL MECH REV
[3]  
[Anonymous], 1954, Z ANGEW MATH PHYS, DOI DOI 10.1007/BF01601214
[4]  
Ericksen J.L., 1955, Stud. Appl. Math., V34, P126, DOI DOI 10.1002/SAPM1955341126
[5]   EQUILIBRIUM OF BARS [J].
ERICKSEN, JL .
JOURNAL OF ELASTICITY, 1975, 5 (3-4) :191-201
[6]  
JAMES RD, 1981, ARCH RATION MECH AN, V77, P143
[7]  
JIANG Q, 1995, J ELASTICITY, V39, P75
[8]   A CLASS OF COMPRESSIBLE ELASTIC-MATERIALS CAPABLE OF SUSTAINING FINITE ANTIPLANE SHEAR [J].
JIANG, Q ;
KNOWLES, JK .
JOURNAL OF ELASTICITY, 1991, 25 (03) :193-201
[9]   ON THE MODELING OF THERMOMECHANICAL PHASE-TRANSFORMATIONS IN SOLIDS [J].
JIANG, Q .
JOURNAL OF ELASTICITY, 1993, 32 (01) :61-91
[10]   ON A CLASS OF SOLUTIONS IN PLANE FINITE ELASTICITY [J].
KLINGBEI.WW ;
SHIELD, RT .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1966, 17 (04) :489-&