The modulus-based matrix double splitting iteration method for linear complementarity problems

被引:13
作者
Fang, Xi-Ming [1 ]
Zhu, Zhi-Wei [1 ]
机构
[1] Zhaoqing Univ, Dept Math & Stat, Zhaoqing, Peoples R China
关键词
Linear complementarity problem; Modulus-based; Matrix splitting; Optimal parameter; MULTISPLITTING RELAXATION METHODS; CONVERGENCE;
D O I
10.1016/j.camwa.2019.06.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For large sparse linear complementarity problems, through reformulating them as implicit fixed-point equations, we propose a modulus-based matrix double splitting (MB-DS) iteration method by splitting the system matrices twice. Besides, the convergence of this method is proved when the system matrix is a P-matrix and an H+-matrix. In some special cases, we present the convergence regions and the optimal values for the parameter omega. In order to show the efficiency of the MB-DS iteration method and the effectiveness of the optimal parameter, some corresponding numerical experiments are performed. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3633 / 3643
页数:11
相关论文
共 36 条
[2]  
AHN BH, 1983, MATH PROGRAM, V26, P295, DOI 10.1007/BF02591868
[3]  
[Anonymous], 1996, Numer. Math. J. Chin. Univ. (Engl. Ser.)
[4]  
Bai Z-Z., 2001, RESEAUX SYSTEMES REP, V13, P125
[5]   A modified damped Newton method for linear complementarity problems [J].
Bai, Zhong-Zhi ;
Dong, Jun-Liang .
NUMERICAL ALGORITHMS, 2006, 42 (3-4) :207-228
[6]   Modulus-based synchronous multisplitting iteration methods for linear complementarity problems [J].
Bai, Zhong-Zhi ;
Zhang, Li-Li .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (03) :425-439
[7]   Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems [J].
Bai, Zhong-Zhi ;
Zhang, Li-Li .
NUMERICAL ALGORITHMS, 2013, 62 (01) :59-77
[8]   Modulus-based matrix splitting iteration methods for linear complementarity problems [J].
Bai, Zhong-Zhi .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (06) :917-933
[9]   The convergence of parallel iteration algorithms for linear complementarity problems [J].
Bai, ZZ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (09) :1-17
[10]   Chaotic iterative methods for the linear complementarity problems [J].
Bai, ZZ ;
Evans, DJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 96 (02) :127-138