A lower bound to the spectral threshold in curved tubes

被引:14
作者
Exner, P [1 ]
Freitas, P
Krejcirík, D
机构
[1] Acad Sci Czech Republ, Inst Nucl Phys, Dept Phys Theor, Prague 25068, Czech Republic
[2] Czech Tech Univ, Doppler Inst, Prague 11519, Czech Republic
[3] Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2004年 / 460卷 / 2052期
关键词
Laplacian; eigenvalues in tubes and tori; quantum waveguides;
D O I
10.1098/rspa.2004.1356
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the Laplacian in curved tubes of arbitrary cross-section rotating together with the Frenet frame along curves in Euclidean spaces of arbitrary dimension, subject to Dirichlet boundary conditions on the cylindrical surface and Neumann conditions at the ends of the tube. We prove that the spectral threshold of the Laplacian is estimated from below by the lowest eigenvalue of the Dirichlet Laplacian in a torus determined by the geometry of the tube.
引用
收藏
页码:3457 / 3467
页数:11
相关论文
共 19 条
[1]  
[Anonymous], 2000, MATH PHYS QUANTUM WI
[2]   PROOF OF THE PAYNE-POLYA-WEINBERGER CONJECTURE [J].
ASHBAUGH, MS ;
BENGURIA, RD .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 25 (01) :19-29
[3]   LOWER BOUNDS TO BOUND-STATE ENERGIES IN BENT TUBES [J].
ASHBAUGH, MS ;
EXNER, P .
PHYSICS LETTERS A, 1990, 150 (3-4) :183-186
[4]   A 2ND PROOF OF THE PAYNE-POLYA-WEINBERGER CONJECTURE [J].
ASHBAUGH, MS ;
BENGURIA, RD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :181-190
[5]  
CHENAUD B, 2004, UNPUB GEOMETRICALLY
[6]   CURVATURE-INDUCED BOUND-STATES IN QUANTUM WAVE-GUIDES IN 2-DIMENSIONS AND 3-DIMENSIONS [J].
DUCLOS, P ;
EXNER, P .
REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (01) :73-102
[7]   BOUND-STATES IN CURVED QUANTUM WAVE-GUIDES [J].
EXNER, P ;
SEBA, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (11) :2574-2580
[8]  
EXNER P, 2001, P 13 INT C MATH PHYS, P437
[9]   BOUND-STATES IN TWISTING TUBES [J].
GOLDSTONE, J ;
JAFFE, RL .
PHYSICAL REVIEW B, 1992, 45 (24) :14100-14107
[10]  
Henrot A, 2003, J EVOL EQU, V3, P443, DOI 10.1007/s00028-003-0111-0