Prediction of Concrete Carbonization Depth Based on DE-BP Neural Network

被引:9
作者
Bu, Narui
Yang, Guoli
Zhao, Hui
机构
来源
2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL 3, PROCEEDINGS | 2009年
关键词
concrete carbonization depth; DE-BP neural network; prediction;
D O I
10.1109/IITA.2009.252
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Based on the DE-BP (Back Propagation-Differential Evolution) neural network, the predicting model of concrete carbonization depth is presented. The precision of the model is checked using the monitoring data. The comparisons between the predicted results of the three models (BP model, GABP model and DE-BP model) and the monitoring data show that the precision of the present algorithm is higher with the maximum relative error being 2.8%.
引用
收藏
页码:240 / 243
页数:4
相关论文
共 10 条
  • [1] [Anonymous], APPL SOFT COMPUT
  • [2] [Anonymous], P C EV COMP CEC 02 M
  • [3] DITAONIU, 2003, DURABILITY LIFE FORE, P60
  • [4] FENGCHIWANG, 2007, J SHENYANG JIANZHU U, P914
  • [5] Soft sensors for product quality monitoring in debutanizer distillation columns
    Fortuna, L
    Graziani, S
    Xibilia, MG
    [J]. CONTROL ENGINEERING PRACTICE, 2005, 13 (04) : 499 - 508
  • [6] Kenneth P, 2006, NATURAL COMPUTING SE
  • [7] NAGTK S, 2006, ACI MATER J, V40, P120
  • [8] PTPEDOKIS KA, 2005, CONCRETE ENG SCI, V52, P1412
  • [9] SAZUK M, 2006, STRUCTURE SAFETY, V50, P1540
  • [10] WEN Q, 2006, P 16 CONCR CONSTR RE, P59