Estimation of random effects and identifying heterogeneous genes in meta-analysis of gene expression studies

被引:7
作者
Siangphoe, Umaporn [1 ]
Archer, Kellie J. [1 ,2 ]
机构
[1] Virginia Commonwealth Univ, Dept Biostat, One Capitol Sq,Seventh Floor,830 East Main St, Richmond, VA 23219 USA
[2] Virginia Commonwealth Univ, Massey Canc Ctr Biostat Shared Resourc, Richmond, VA USA
关键词
gene expression; meta-analysis; random-effects model; inter-study variance; simulation; Alzheimer's disease; RANDOM-EFFECTS MODEL; RNA-SEQ DATA; CHANNEL CATFISH; QUALITY-CONTROL; MICROARRAY; VARIANCE; PROFILES; INFORMATION; DATASETS; DISEASE;
D O I
10.1093/bib/bbw050
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Combining effect sizes from individual studies using random-effects meta-analysis models are commonly applied in high-dimensional gene expression data. However, unknown study heterogeneity can arise from inconsistencies in sample quality and experimental conditions. High heterogeneity of effect sizes can reduce statistical power of the models. In this study, we describe three hypothesis-testing frameworks for meta-analysis of microarray data, and review several existing meta-analytic techniques that have been used in the genomic setting. These include P-value-based methods, rank-based methods and effect-size-based methods. We then discuss limitations of some of these methods and describe random-effects-based methods in detail. We introduce two methods for estimating the inter-study variance in random-effects meta-analytic models and another method for identifying heterogeneous genes for gene expression data. We compared various methods with the standard and existing meta-analytic techniques in the genomic framework. We demonstrate our results through a series of simulations and application in Alzheimer's gene expression data.
引用
收藏
页码:602 / 618
页数:17
相关论文
共 74 条
[1]  
[Anonymous], MAMA METAANALYSIS MI
[2]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   Statistics review 13: Receiver operating characteristic curves [J].
Bewick, V ;
Cheek, L ;
Ball, J .
CRITICAL CARE, 2004, 8 (06) :508-512
[5]  
Bickel P.J., 2001, MATH STAT, V1
[6]  
Biggerstaff BJ, 1997, STAT MED, V16, P753, DOI 10.1002/(SICI)1097-0258(19970415)16:7<753::AID-SIM494>3.3.CO
[7]  
2-7
[8]   Accelerated neurodegeneration through chaperone-mediated oligomerization of tau [J].
Blair, Laura J. ;
Nordhues, Bryce A. ;
Hil, Shannon E. ;
Scaglione, Matthew ;
O'Leary, John C., III ;
Fontaine, Sarah N. ;
Breydo, Leonid ;
Zhang, Bo ;
Li, Pengfei ;
Wang, Li ;
Cotman, Carl ;
Paulson, Henry L. ;
Muscho, Martin ;
Uversky, Vladimir N. ;
Klengel, Torsten ;
Binder, Elisabeth B. ;
Kayed, Rakez ;
Golde, Todd E. ;
Berchtold, Nicole ;
Dickey, Chad A. .
JOURNAL OF CLINICAL INVESTIGATION, 2013, 123 (10) :4158-4169
[9]   Incipient Alzheimer's disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses [J].
Blalock, EM ;
Geddes, JW ;
Chen, KC ;
Porter, NM ;
Markesbery, WR ;
Landfield, PW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (07) :2173-2178
[10]   Some general points in estimating heterogeneity variance with the DerSimonian-Laird estimator [J].
Böhning, D ;
Malzahn, U ;
Dietz, E ;
Schlattmann, P ;
Viwatwongkasem, C ;
Biggeri, A .
BIOSTATISTICS, 2002, 3 (04) :445-457