Homogeneous structures on three-dimensional Lorentzian manifolds

被引:88
作者
Calvaruso, Giovanni [1 ]
机构
[1] Univ Lecce, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
关键词
Lorentzian manifolds; homogeneous pseudo-Riemannian structures; symmetric spaces;
D O I
10.1016/j.geomphys.2006.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any non-symmetric three-dimensional homogeneous Lorentzian manifold is isometric to a Lie group equipped with a left-invariant Lorentzian metric. We then classify all three-dimensional homogeneous Lorentzian manifolds. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1279 / 1291
页数:13
相关论文
共 19 条
[1]   ON HOMOGENEOUS RIEMANNIAN MANIFOLDS [J].
AMBROSE, W ;
SINGER, IM .
DUKE MATHEMATICAL JOURNAL, 1958, 25 (04) :647-669
[2]   Three-dimensional Lorentzian manifolds with constant principal Ricci curvatures rho(1)=rho(2)not equal rho(3) [J].
Bueken, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (02) :1000-1013
[3]   Examples of curvature homogeneous Lorentz metrics [J].
Bueken, P ;
Vanhecke, L .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (05) :L93-L96
[4]   Three-dimensional Lorentz metrics and curvature homogeneity of order one [J].
Bueken, P ;
Djoric, M .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (01) :85-103
[5]  
Cahen M., 1990, Journal of Geometry and Physics, V7, P571, DOI 10.1016/0393-0440(90)90007-P
[6]  
CALVARUSO G, 2006, EINSTEIN LIKE LORENT
[7]   Three-dimensional Lorentz manifolds admitting a parallel null vector field [J].
Chaichi, M ;
García-Río, E ;
Vázquez-Abal, ME .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (04) :841-850
[8]  
Cordero L. A., 1997, REND MAT APPL, V17, P129
[9]  
GADEA PM, 1992, HOUSTON J MATH, V18, P449
[10]  
GROMOV M, 1987, ERGEB MATH GRENZGEB, V9