A NOTE ON MULTIPLICATIVE (GENERALIZED) (α, β)-DERIVATIONS IN PRIME RINGS

被引:3
|
作者
Rehman, Nadeem Ur [1 ]
Al-omary, Radwan M. [2 ]
Muthana, Najat Mohammed [3 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, India
[2] Ibb Univ, Dept Math, Ibb, Yemen
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
关键词
prime ring; multiplicative (generalized) (alpha; beta)-derivation; left ideal; DERIVATIONS;
D O I
10.2478/amsil-2019-0008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a prime ring with center Z(R). A map G: R -> R is called a multiplicative (generalized) (alpha, beta)-derivation if G(xy) = G(x)alpha(y)+beta(x)g(y) is fulfilled for all x, y is an element of R, where g : R -> R is any map (not necessarily derivation) and alpha, beta : R -> R are automorphisms. Suppose that G and H are two multiplicative (generalized) (alpha, beta)-derivations associated with the mappings g and h, respectively, on R and alpha, beta are automorphisms of R. The main objective of the present paper is to investigate the following algebraic identities: (i) G(xy) + alpha(xy) = 0, (ii) G(xy) + alpha(yx) = 0, (iii) G(xy) + G(x)G(y) = 0, (iv) G(xy) = alpha(y) circle H(x) and (v) G(xy) = [alpha(y), H(x)] for all x, y in an appropriate subset of R.
引用
收藏
页码:266 / 275
页数:10
相关论文
共 50 条
  • [41] IDENTITIES WITH MULTIPLICATIVE GENERALIZED ( α, α )-DERIVATIONS OF SEMIPRIME RINGS
    Sandhu, Gurninder Singh
    Ayran, Ayse
    Aydin, Neset
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (03): : 365 - 382
  • [42] A Note on Skew Derivations and Antiautomorphisms of Prime Rings
    Alqarni, Faez A.
    Rehman, Nadeem U. R.
    Alnoghashi, Hafedh
    Nisar, Junaid
    Al-Mallah, Omar
    JOURNAL OF MATHEMATICS, 2025, 2025 (01)
  • [43] Some results on generalized (σ, τ)-derivations in prime rings
    Güven E.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (2): : 559 - 566
  • [44] Prime Rings with Generalized Derivations on Right Ideals
    Demir, C.
    Argac, N.
    ALGEBRA COLLOQUIUM, 2011, 18 : 987 - 998
  • [45] Generalized derivations on Lie ideals in prime rings
    Golbasi, Oznur
    Koc, Emine
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (01) : 23 - 28
  • [46] On generalized derivations and Jordan ideals of prime rings
    Sandhu, Gurninder S.
    Davvaz, Bijan
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 227 - 233
  • [47] Generalized g-derivations on prime rings
    De Filippis, V.
    Tiwari, S. K.
    Singh, Sanjay Kumar
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (02)
  • [48] Identities involving generalized derivations in prime rings
    Yadav, V. K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 259 - 270
  • [49] On Lie ideals of *-prime rings with generalized derivations
    Rehman, Nadeem Ur
    Al-Omary, Radwan Mohammed
    Ansari, Abu Zaid
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2015, 21 (01): : 19 - 26
  • [50] Product and commuting generalized derivations in prime rings
    Tiwari, S. K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1377 - 1397